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AN EVALUATION OF RANDOM ANALYSIS METHODS
FOR THE DETERMINATION OF PANEL DAMPING

By Waman V. Bhat and John F. Wilby
The Boeing Company, Seattle, Washington

1.0 SUMMARY

An analytical study is made of steady-state and non-steady-state methods for the mea-
surement of panel damping. Particular emphasis is placed on the use of random process tech-
niques in conjunction with digital data reduction methods. The steady-state methods considered
use the response power spectral density, response autocorrelation, excitation-response cross-
power spectral density, or single-sided Fourier transform (SSFT) of the response autocorrela-
tion function. Non-steady-state methods are associated mainly with the use of rapid frequency
sweep excitation. Problems associated with the practical application of each method are
evaluated with specific reference to the case of a panel exposed to a turbulent airflow, and
two methods, the power spectral density and the single-sided Fourier transform methods, are
selected as being the most suitable. These two methods are demonstrated experimentally, and
it is shown that the power spectral density method is satisfactory under most conditions, pro-
vided that appropriate corrections are applied to account for filter bandwidth and background
noise errors. Thus, the response power spectral density method is recommended for the mea-
surement of the damping of panels exposed to a moving airflow.



2.0 INTRODUCTION

The amplitude of vibration of a structural system exposed to an exciting force is con-
trolled, to a large extent, by the total damping present in the system. When predicting the
response of a structure to a given excitation it is necessary to know the damping to a suffi-
cient degree of accuracy. Equally important, when measuring the vibration of a model or
full-scale structure under certain excitation conditions, measurements of the panel damping
are required if the experimental data are to be extrapolated to other conditions with reason-
able reliability.

Techniques for the measurement of the damping of a structure have been developed
over the years, but, until recently, the methods have been limited to the use of steady-state,
discrete frequency excitation (e.g., refs. 1 through 4). For a structural system whose damping
does not vary with operating condition or environment, and where measurements can be
made under specially controlled test conditions, the discrete frequency methods are usually
adequate. However, when the damping is dependent on operating condition, for example
where flutter or acoustic damping is important, alternative techniques for damping measure-
ment have to be used. In response to this need, techniques using steady-state random excita-
tion and transient excitation have been developed in recent years. These alternative methods

. can be used when the structure is exposed to random excitation or is exposed to the operat-
ing environment for only a short time or when noise interference occurs in the measured
excitation or response.

The case of a structurc exposed to a moving airstream is an important example of a test
situation where the steady-state, discrete frequency methods are unreliable. It was for this
reason that the present study of damping measurement methods was undertaken. Results of
the study, which considers steady-state random excitation and transient excitation methods,
are contained in this report. Essentially, the discussion can be separated into two parts, the
first of which is an analytical survey of available methods. The second part describes an
experimental demonstration of two techniques that, on the basis of the analytical study, are
judged to be the most suitable for the application under consideration, namely, the measure-
ment of panel damping in the presence of a moving airstream. Throughout the discussion,
emphasis is placed on the accuracy and reliability of each method in practical situations.
Digital techniques for data reduction will be required for several of the damping measurement

methods. Therefore, special attention is given to problems associated with these digital
techniques.

As a final result of the study, techniques will be recommended for the measurement of
panel damping in the presence of an airflow. In principle, the methods will be applicable to
structures of greater complexity than a simple panel in a wind tunnel wall. However, it may
be necessary to assume that there is some knowledge of the natural frequencies and mode
shapes of the system so that the measuring tranducers can be placed at optimum locations.

The program was carried out at The Boeing Company, Seattle, Washington and was
monitored by Dr. Wei J. Chyu, NASA Ames Research Center.
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SYMBOLS

area of structure, for panel A =L L3

see equation (29)

defined by equations (43) and (83)

defined by equation (84)

Viscous damping rate

real part of cross-power spectral density function Sp x,x", w)
real part of cross-power spectral density function Spl x,x", w)

th

generalized damping coefficient in &' mode

equivalent viscous damping coefficient in terms of the hysteretic
damping, (kyvo)/ w

flexural rigidity of a plate
weighting function, lag window
see equation (39)

single-sided Fourier transform of the response autocorrelation
function, Ry, (7), defined by equation(71)

frequency

center frequency of analyzing filter

natural frequency of mode (o= m,n)

upper frequency of interest

ideal half-power bandwidth of a resonance peak
filter bandwidth at the half-power point
measured bandwidth of a resonance peak

frequency interval at which frequency-dependent functions are
calculated, 1/AT"’

modulus of vector H

complex frequency response function for mode of order ¢,
defined by equations (4) and (5)



Hy(w)
Ha(w, 1)
Hy( w) 2

ha(), hol7)

L)

n(t)

complex conjugate of H(w)
time-varying frequency response function
time-averaged square of frequency response function

impulse response function for mode of order «, defined by
equation (5)

defined by equation (18)

val

positive integer

displacement joint acceptance for mode «
displacement cross acceptance for modes «,g
miscellaneous constants or functions, defined in text
time constant in w '(t)

number of degrees of freedom in section 4.1.7

number of dagta points used for calculating finite discrete
transforms, 2J

panel length in x| direction

panel length in x5 direction

generalized external force in mode of order «
mass per unit area

generalized mass in mode of order «

mode order in x; direction denoting the number of modal
half-wavelengths

number of measurement locations in section 4.1.7
number of data points

mode order in X3 direction, denoting the number of modal
half-wavelengths

noise in response (see fig. 1)

ratio of ideal bandwidth of resonance peak to filter bandwidth,
Af, /AR
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Ry (1), Rpy(7)
Rw’p(l(_, 5': T)
Rn(n, A7)
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Sp
S(w)
Sp(w)

Sp (@), Spa(w)

Fourier transform of p(x,t), defined by equation (10)
complex conjugate of P(x,w)

Fourier transform of p;(t) and p,(t), respectively
Fourier transform of p(t)

pressure at point x and time t

excitation and noise in excitation (see fig. 1)
pressure at time n - A7 |

complex part of S; ', x", w)

complex part of S;l(Z(_',l(.", w)

Fourier transform of q,(t)

generalized coordinate of mode of order
autocorrelation function

excitation pressure cross-correlation function
displacement autocorrelation function

narrow band autocorrelation function

defined by equation (49)

defined by equation (51)

cross-correlation function, equation (62)
autocorrelation at time delay n - At

mode order in X direction

defined by equation (39)

white noise power spectral density

power spectral density function

power spectral density function of excitation p(x, t)

power spectral density functions of excitations pj(x, t) and
py(x, t), respectively



Sw(X, w) power spectral density function of the displacement w(x, t)

Sw(Xs W)y displacement power spectral density function in mode «

Sw’p(gg, X', w) cross-power spectral density functic_)n relating the excitation
p(x’, t) and response w(x, t), equations (54) and (55)

Sw,p(i’ X'w) contribution of « mode to Sw’p(gg, x', w)

Sk(k,AfF) power spectral density at a frequency of k - Afg

s digitizing or sampling rate, 1/A7

] mode order in x3 direction

ds/df rate of change of arc length with frequency

t, T time parameters

T total sample length

AT length of sample subinterval, N - At

AT' length of subinterval after addition of zeros

Uy(w) Fourier transform of L,(t)

\Y number of subspectra, T/AT

W(x, w) Fourier transform of the displacement w(x, t)

w(x, t) - displacement at point x, and time t

X, see equation (35)

X= (Xl’ X3) distance vector in (Xl ,x3) plane

o= (m,n) two-dimensional mode order

B=(r,8) two-dimensional mode order

ﬁpn defined by equation (34)

B;n complex conjugate of B,

I‘mn(w) defined by equation (31)

Ly p% X', ) nondimensional cross-power spectral density function relating

the excitation and response, defined by equation (56)

5pq 1 forp=gq,0forp#gq
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Vo), Yp(x)

delta function 1 for x' = x,, O for x'# o
delta function, 1 for r =0, 0 for r#0
normalized standard error, equation (92)

error in the frequency response function due to the drift in
natural frequency

viscous damping factor in mode of order «
equivalent viscous damping factor
see equation (25)

sum of response power spectral densities at all measuring locations
due to mode of order p, defined by equation (36) '

see equation (39)

stiffness

stiffness in the mode of order «

unitary matrix, defined by equation (32)

complex conjugate of )‘pi

panel mass per unit area

hysteretic damping factor for mode of order «

radius of curvature of the cross-power spectral density curve

ratio of background noise power spectral density to the true
response power spectral density at resonance

time delay

maximum time delay in autocorrelation function
sampling interval, 1/s

spectral window, filter frequency response function
time-varying phase angle

defined by equation (69)

panel mode shapes of order a and 3



co#gnplex conjugate of y,, and xpB, respectively, 1[/; =y, and
Vg =g

angular frequency

angular frequency of mode of order o

natural frequency for damped free vibrations,w,, a-¢ g‘! )]/2

drift in the natural frequency

" maximum value of the drift in natural frequency

time-independent part of resonance frequency of a system with
a time-varying frequency response function

angular frequency bandwidth

angular frequency half-power bandwidth of a resonance peak
for mode of order o



3.0 DAMPING OF STRUCTURES

3.1 GENERAL DISCUSSION

Two important sources of damping in typical aerospace structures are structural hysteresis
and acoustic radiation. For structures with no special damping treatments, hysteretic damping
is mainly due to the joints in the structure, although there is some contribution from the
damping of the material itself. The hysteretic damping force is proportional to displacement
and is in counterphase with velocity. Acoustic radiation damping arises from the dissipation
of energy in the surrounding air and is viscous controlled. Viscous damping forces are propor-
tional to, and in counterphase with, the structural velocity.

From available literature it is possible to determine typical values of the damping ratios
of structures ranging from single rectangular plates to stiffened airplane structures. Maestrello
(ref. 5) and Wilby (ref. 6) show damping ratios in the range 0.001 < { < 0.008 for single
rectangular panels with clamped boundaries. In some cases (ref. 6), the damping is seen to be
dependent on the environment, presumably when the acoustic radiation damping forms a
significant fraction of the total damping. Laboratory measurements on stiffened panels by
Mead (refs. 7 and 8) give damping ratios in the range 0.002 to 0.013. Higher damping ratios,
0.014 to 0.020, have been measured on aircraft structures by Clarkson and Ford (ref. 9),
although Mead (ref.7) has placed some doubt on the accuracy of these values because the
method of data anlaysis could cause overestimation of the damping.

The damping of structures can be increased greatly by the addition of special treatments
such as damping tape. Mead (ref. 8) lists damping ratios up to 0.07 for a rectangular aluminum
plate with one layer of damping tape, and Maestrello (ref. 5) measures damping ratios as high
as 0.1 for a plate with two layers of tape. These results show a more than ten-fold increase in
the damping with respect to the untreated case. The damping introduced by the treatment,
using either unconstrained or constrained layers, is hysteretic in nature (ref. 8), with the
result that the damping of the treated structure will be mainly hysteretic.

The above data show that, for untreated structures of the type likely to be found in
aerospace construction, the damping will be low. Thus, in the mathematical analysis,the
damping can be represented for simplicity as either solely hysteretic or solely viscous. As
will be seen later, this is particularly useful for random vibration where the concept of
hysteretic damping is not strictly valid. When damping treatment is added and the damping
is mainly hysteretic, the assumption that the damping is solely viscous will still be made,
although it will introduce some error.

Several methods for measuring the damping of structures are available—discrete frequency
or random, steady-state or transient—and the choice of method for a particular test will
depend on the experimental conditions present. Discrete frequency methods are suitable for
conditions where there is no noise present in either the excitation or response. These methods
have been discussed extensively by several authors (see refs. 1, 2, 4, and 10) and will not be
included in this report. In the present case of interest, the steady-state, discrete frequency
method is unsatisfactory because of the high level of “‘noise” introduced by the pressure
fluctuations in the airflow, and the method has been excluded from consideration. Thus, the



analytical study in sections 4.0 through 6.0 will consider only steady-state random methods
and transient methods. In some cases the turbulent airflow will provide the necessary excita-
tion, but in other cases a second excitation will be introduced as a reference and the turbu-
lent airflow regarded as noise in the system. The methods described will apply to any repre-
sentation of the panel vibration (displacement, velocity, acceleration, etc.), but since the
method chosen will be used with displacement probe instrumentation, the structural vibra-
tion will be described, without loss of generality, in terms of displacement.

Several of the measurement methods discussed will be suitable for either analog or
digital data analysis techniques, but in other cases digital analysis procedures will be neces-
sary. Thus, emphasis will be placed on the use of digital techniques for all methods, particu-
larly when these techniques involve relatively new problem areas.

3.2 PANEL VIBRATION

At several stages in the analysis of the damping methods, reference will be made to the
equation of motion for rectangular panels. Thus it is appropriate to outline the normal
mode analysis of a rectangular plate exposed to random excitation, the resulting displace-
ment power spectral density and autocorrelation equations being extensions of the corre-
sponding equations for single-degree-of-freedom systems. Although the analysis is performed
with specific reference to rectangular plates, the general conclusions will have wider application.

Assume that the displacement w(x,t) of the vibrating structure obeys the thin-plate
equation for small deflections

2
Md—V2V+ cd¥ 4 Dvdw = p(x,b), (1
dt dt

where M is the mass per unit area, C is the viscous damping, D is the flexural rigidity, and
p(x,t) is the exciting force. D can be complex if hysteretic damping is included in the stiffness
term. Assume further that the solution to equation (1) can be expressed in terms of a linear
sum of normal modes, i.e.,

w(x,t) =; (D) Yo (%), (2)

where q oz(t) is the generalized coordinate for the ath mode and dza(g) is the mode shape
function. Then the equation of motion for the ath mode is given by

Ma'qa+ Colat Kol +ivg)qy = Ly, 3)
where My, Cy, k(1 +1ivy), and L, are, respectively, the generalized mass, viscous damping,

complex stiffness, and external force in the ath mode. The parameter Vo represents the
hysteretic damping of the system. If the panel surface density is denoted by u(x), then

M, = { 1Y 2(0) ds,



where the notation j‘;‘ dx denotes the double integral .I(; j(; dx3dx; over the panel
area A=L|Ls.

For purely viscous damping the frequency response function for the mode is

I
Hpw) = ’ 4)
T Ml ~w?) + 2w,

where wy, =V/Ky /My is the undamped natural frequency and §, = Ca/mis the damping

ratio. The frequency response function Ha(w) and the impulse response function h,(t) are
related by Fourier transformation, such that

hg(t) =2—11r j_' “Hywe®tdw
and ()
Hy@) = [~ hy(hetat,

it being noted that hy(t) = 0 for t < 0. It can be shown that h,(t) is real, as is expected from
physical reasoning.

For hysteretic damping alone,

1
W) = ’ (©)
He M, [y - o) + ivg@iy?]

but the Fourier transform of this function is complex and does not represent a physically
realizable response. This inconsistency illustrates the difficulties encountered when the con-
cept of hysteretic damping is used in the analysis of vibrations which are not of the deter-
ministic sinusoidal type. It has been suggested (ref. 8) that, to overcome the problem, the
hysteretic damping term be replaced by an equivalent viscous term Cae = (Ko Vo) lw. The
equation of motion would then be

Mgy + Caely t Kl = La- (7
Then the analysis can be performed as for viscous damping and the hysteretic damping rein-
stated in the final result (replacing the term w{ae/wa with v,/2). This argument provides

further justification for considering only viscous damping in the subsequent analyses.

If the equation of motion for viscous damping, similar to equation (7), is Fourier trans-
formed with respect to time, the equation reduces to

Quw) = Hyw)Ug(w), (8)

11
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where Q 0l(oo) is the Fourier transform (or complex Fourier amplitude) of Q) ie.,
1 [ =
W) = =— t)e Wty
Qa( ) 27 -[.ooqa( Je

and Ug/(w) is the Fourier transform of La(t).

Also,
=L f® -t
Up) = 5 [ e [ p(x.0d(00dxat
9
= 0P w)dx
where
_ 1 fe -iwt
P =5- [ _p(xbei@ldt. (10)
Thus, from equation (2) the Fourier transform of the displacement is
W(x,0) = 2_Q @y (), (11)
a
and the displacement power spectral density function at x = (x1,x3) is
Sw(x) = WEWW (x,09, (12)

where the asterisk denotes the complex conjugate. The parameter x in Sw(X,w) is included to
indicate that the displacement power spectral density function for a finite structure is
inhomogeneous.

Substituting equations (8), (9), and (11) in equation (12),

* ' n ! ” ! "
Sw(x:) =§%‘,wa(z)wﬁ(§ma (@ Hg ) ~[fo VoKW Sp(x' X" ) dx'dx”, (13)

where Sp(>_(',>_(" .w) is the excitation pressure cross-power spectral density function,
Sp(x'x" ) = P(x "WP (%" .
Using the relationships

Rm = [ s@elTdo

and

(= -] -
S@ =5 J Rme-iwrr,
—00



the displacement autocorrelation function at x is

Ry (x,0) = §%)¢a(>9wﬁ(g) J, L 0a000 [ @H @S (x' 6" el Tdeodx dg”
(14)
- %;4;3%(5)%(5) S L w0 [ [ gty

Rp (x',x", T+ 7| = 179)d7;d7HdX"dX",

where Rp(g_(', x', 7) is the excitation pressure cross-correlation function.

For a single-degree of freedom system such as a dashpot, the above equations (13) and
(14) reduce to the much simpler forms

Sy = [H@)I?S,@) (15)
and

Ry = [ [ h(rhiryRy(r+ 7 ~1p)drydry, (16)

respectively.

3.3 FREQUENCY RESPONSE FUNCTIONS

In some of the methods discussed in the following sections, the procedure reduces to the
plotting of the frequency response function Hy(w) in the complex plane. The damping ratio
is estimated by fitting a circle to the data points in the neighborhood of the natural frequency,
as a representation of the single-degree-of-freedom system. This technique is used to minimize
effects which cause the measured function to deviate from the true frequency response func-
tion for a single mode.

Kennedy and Pancu (ref. 4) have shown that for a single-degree-of-freedom system with
hysteretic damping, the plot of H'&l (w) is a straight line in the complex Argand plane and
the plot of H(w) (equation (6)) is a circle. However, for viscous damping the locus of Hal (w)
is a parabola and can be considered as an approximation to a straight line only in the neighbor-
hood .of the natural frequency when the damping is small. Thus, the fitting of a circle to the
experimental data for H,(w) is, in itself, an approximation when the damping is considered
to be viscous.

13
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4.0 STEADY-STATE METHODS

In this section, four methods using steady-state random excitation will be discussed.
The methods use:

a) The response power spectral density function

b) The response autocorrelation function

¢) The excitation-response cross-power spectral density function

d) The single-sided Fourier transform of the response autocorrelation function

In three of the methods, a), b), and d), the pressure fluctuations in the turbulent airflow
provide the random excitation forces. Method c) requires the introduction of a second excita-
tion that is used as reference for the cross-power spectral density function, since it is not
practical to use the airflow pressure fluctuations as a datum.

4.1 RESPONSE POWER SPECTRAL DENSITY

4.1.1 Introduction

The response power spectral density method is the stochastic equivalent of the response
amplitude method for discrete frequency excitation. The response power spectrum will
exhibit a series of peaks associated with the natural frequencies of the structure, and the damp-
ing, in common with the discrete frequency excitation case, can be estimated from measure-
ments of the bandwidth of the resonant peaks. The response power spectral density method
is conceptually simple since the damping factor is related to the bandwidth of the resonance
peak. In principle, the method has the advantage that there are no requirements additional to
those normally associated with the measurement of structural response (fig. 1a). However,
for practical multimodal systems, the method suffers from a number of limitations that can
be separated into two broad categories: first, the basic limitations inherent in the method
and, second, the limitations imposed by the data analysis techniques and other peculiarities
of the experimental procedure. The basic limitations include errors introduced by the close-
ness of natural frequencies and the effect of statistical coupling. Examples of the second
category will include errors due to drift of the natural frequencies, the finite bandwidth of
the filter system, contributions from the background noise, and the statistical scatter due
to the finite data sample length. These limitations are often interdependent and occasionally
impose somewhat severe requirements on the experiment, e.g., if a very small filter bandwidth
is required due to very light damping, then very long data sample lengths will be required to
ensure acceptable statistical scatter (or to ensure high statistical reliability).



Errors encountered in the practical use of the response power spectral density method
are investigated analytically. The investigations are carried out with two questions in mind:

a) How can the error under investigation be minimized?
b) How can corrections be made to data acquired from a particular experiment?
Some of the errors encountered are not peculiar to the power spectral density method
since they, or their equivalents, arise in other methods.
4.1.2 Basic Analysis

The displacement power spectral density function for a rectangular panel exposed to
random excitation is given by equation (13). It can now be written in the form

Swxe) =2 %‘, VYO, @ ), a7
where

lag@ = J, f a8 0gx"8(x" 5" 63K dx” (18)

and Sw(>_(,w) is evaluated at point x = (xl,X3). Joint acceptances Jaa(“’) and cross acceptances

JaB("") can be defined as

and

_ 4

The joint acceptance term can be simplified slightly because if

Sp(x"x".0) = Cp(x" %", - IQp(x"x" )
it can be shown (ref. 6) that
fA‘{Awa()-(')‘pa()—(")Qp()_(',ﬁ"sw)d)_('d)_s" = Q.

It should be noted that the excitation p(x,t) will affect the response power spectral density
Sw(x,w) only through Iaﬁ(‘*’)' When the excitation is homogeneously distributed over the
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panel, the integrand in equation (18) is a function of separation distance only. For an
inhomogeneous excitation, the integrand, and hence IaB(w)’ will depend on the location of
the excitation on the panel.

For a single mode, the displacement power spectral density is given by
S (.6 = Hy(@H,, @)W 2(2)Ty @S ()

= |H ()2, 20 @S 5 )

Thus, the displacement power spectral density depends on the joint acceptance J,(w), loca-
tion x (via mode shape Y, (x)), and frequency response function Hgyf(w). Jaow) is weakly
dependent on w (see ref. 6) and can be considered to be constant in the vicinity of the reson-
ance peak. The mode shape Y, is essentially a scaling factor giving maximum deflection at

an antinode and zero deflection at a node. Therefore, for a single mode, the displacement
power spectral density is proportional to the square of the frequency response function, or

S (2. = K[Ho(@)[* S (@),

where K is a factor that depends on the location of the measuring probe and the joint accept-
ance. If the excitation pressure power spectral density is approximately constant in the fre-
quency range of interest, the frequency response function and the damping of the system can
be estimated from the displacement power spectral density function. The viscous damping
ratio is given by

_Awy _ Afy
o Fwg 26y

where Afa is the half-power bandwidth of the resonance peak of mode «, occurring at a
frequency of f,.

For a single-point excitation, with power spectral density Sp(w) at location x,, the
displacement power spectral density function is

S = 202001 [, 4,000,880 - 5080 - x)dx'dx”

(19)
= gwazo_owaz(ggo)m a(w)|2sp(w).



4.1.3 Statistical Coupling

Equation (17) for the displacement power spectral density function can be written in
the form

Sw() = 2oty (O Hy 1y +ZZB: VoG OH @Hg g (20)
04
(a#B)

The cross terms, for which a# 8, are due to statistical coupling between the modes of
the panel, and these terms will cause the response peaks to deviate from the IHa(w)Izlaa(w)
shape. Thus, the statistical coupling or cross terms will influence the damping measurements.

Three factors will affect the contributions from statistical coupling between modes &
and f: cross acceptances J5g(w), frequency response functions Ha(w), HB(w), and mode
shapes tl/a(x) \Il (x). (Strictly speaking, the real function [H(x (w)Hﬁ(w)J B(w) +
Hd(‘*’)Hp (w)Jﬁa(w)] should be considered as a whole). Thus, the effects of statistical cou
pling on the measured displacement spectrum will depend on the damping and natural fre-
quencies of the modes, the excitation cross-power spectral density, and the location at which
the measurements are made.

As an illustration of the effects of the cross terms, the response of a simply supported
plate to turbulent boundary layer excitation has been calculated using the methods of
reference 6. The plate is assumed to be aluminum with dimensions of 30.48 by 17.78 by
0.102 cm (12 by 7 by 0.04 in.) and a damping ratio that is the same for all modes. The panel
is exposed to typical Mach 2.0 flow. Displacement spectra were calculated both with and with-
out the cross terms. The contributions due to statistical coupling at the eight lowest natural
frequencies of the panel are shown in figure 2. For a dampm%factor of 0.04, the contribu-
tions due to statistical coupling vary from about 107! to 1073 times the total power spectral
density (including cross terms). In all cases, the contribution due to the cross terms decreases
with damping ratio.

The influence of the cross terms on the measured damping can be estimated by compari-
son of the calculated spectra. It is found that the error is approximately proportional to the
cross-term contribution shown on the ordinate scale of figure 2. For the example under con-
sideration and a damping factor less than 0.02, the error in the estimated damping factor will
be less than 7%.

It is interesting to note that the contributions due to statistical coupling, shown in
figure 2, are highest for modes (1,2), (2,2), (4.1), and (2,3). Wilby (ref. 6) has shown that, for
the boundary layer model used in the above calculations,

JaB =0, forn+sodd

#0, forn+seven

where mode orders o = (m,n) and B = (r,s). Adjacent modes that satisfy the conditions that

(n + s) be even will be expected to show the effects of statistical coupling most clearly. For

the modes identified above, mode pairs (1,2), (2,2) and (4,1), (2,3) satisfy the condition (n + s)
even.



4.1.4 Background Noise and Off-Resonant Contributions

The measured displacement power spectral density function can be influenced by
several undesirable effects, and the signals causing these effects can be referred to as noise.
The noise may be in the form of additional excitation forces or electronic noise in the measur-
ing equipment. Off-resonant contributions from neighboring modes also come within this
definition of noise and can be treated in a similar manner.

Consider first the effects caused by a second excitation that is additional to the turbu-
lent boundary layer pressure field. For the sake of simplicity, assume that the system is a
single-degree-of-freedom dashpot and the input and output signals are related as shown in
figure 1b. The two excitations are denoted by p(t) and pz(t), where p2(t) represents the
noise signal.

Then
Sw@) = [Hy ()| 2P@)P” @),
where
P@ = [ [py(0) + pp(v)]e@ldt
= P1 @) + Py().
Thus,

Sy() = H @) 2 [P} @) + Py@)] [P (@) + Pole)]
If p(t) and p,(t) are uncorrelated,
PPy (@) = 0=P “(@Pyw)

and

S, H(w)
= 2|y 42p2
Sy = 1 H )| [1 +Spl (w)]spl(w).
21
= K @Hgw)|?Sp | @),

where S 1 (w) and S 2(w) are the power spectral density functions associated with p(t) and
po(t), respectively. If Spl(w) and sz(w) are slowly varying functions of w, then even in the
presence of noise in the excitation, the displacement power spectral density function is
approximately proportional to the squares of the frequency response function. Under these
conditions, noise in the excitation introduces only negligible errors in the damping measured
using the response power spectral density method.



Extending the above analysis to the case of a single mode of a rectangular panel,
equation (21) becomes

Sy (x:0y = Vo) Hg@)]? j/; ‘&\lfab_(')\lla()_g")[splgx W+ Sp)(x'x" )] dx'dy", (22)

where S,,1(x",x",«) and sz(g’,g",w) represent the cross-power spectral density functions of
the two signals, which are again assumed to be mutually uncorrelated. Thus, if damping
estimates are now made directly from S (x Wy, the displacement power spectral density for
mode «, it is required that both S l(x x",«) and Sp (x',x",w) be slowly varying with fre-
quency. (In fact, the requirement apphes only to the real part of each cross-power spectral
density function.)

When noise is present in the response signal also, the measured response, for a single-
degree-of-freedom system, has the form

S
- pz(w)]+ n(w 51

_ 2
Sw(w) =) IHal [ @ | Sp1w)
(23)
= K @H @ +K" @] S, @),

where the noise signal n(t) is uncorrelated with the response w(t). Thus, noise in the response
introduces an additional term K" (w) in the total response power spectral density function.
The displacement power spectrum can be used for an accurate estimate of the damping ratio
only when K" (w) can be neglected or when corrections can be made to the data.

The effects of contributions from the off-resonant modes will be similar to those of
background noise in the response. If the effects of statistical coupling are neglected, the dis-
placement power spectral density function for two adjacent modes, with no other noise in
the system, is obtained from equation (17).

S (3.9 = A0 | Hyle)|2 Uy (0 09 + Hg) 2 Y2500 )
(24)
= | KolHo@)|? + KglHg @)]?] S ).

Comparing ecjuations (23) and (24) the term for mode B in the two-mode system has
" the same effect as the noise term K" (w) in equation (23). Therefore, these two sources of
error can be investigated using the following representation for the displacement power
spectral density function:

S0 = |1 +0 (& ) ] I, @IPK @8y, (25)

where o denotes the ratio of background noise power spectral density to the true response
power spectral density,at resonance frequency Wy - For n= 0, the background noise has a
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constant power spectral density. Other frequency dependencies for the noise can be obtained
by assigning appropriate values of . For example, in the case of two modes, the contribution
of the off-resonant mode § can be approximated by assigning positive and negative values to
N for fﬁ > f, and fB < fy, respectively.

The errors that the response power spectral density method can introduce into measure-
ments of the damping ratio when background noise is present have been estimated for values
of m equal to 0, +2, and +4 and for different levels of background noise. These errors are
shown in figure 3, as a percentage of the true damping factor, with § a>M,and 0
as parameters. For damping factor i‘a < 0.04, the error is almost independent of fa and n
and can be treated as a function of o only.

Figure 3 cannot be used directly to correct measured damping factors in practice. A
typical response spectrum will contain a series of peaks and valleys. In such a case, the ratio
of power spectral density in the valley to the resonant power spectral density of the adjacent
peak can be used to obtain the level of background noise. A typical chart that can be used to
correct the measured damping factor, when ;’M is less than 0.04, is contained in figure 4.

The above procedure will not give good estimates of the error when the two natural
frequencies f, and f; are very close together. Under such conditions the contribution from
the off-resonant mode will not be represented very accurately by a function of the form 7.

It is interesting to note that, in the present case, where the vibration and noise are both
random, mutually uncorrelated signals, the power spectral components can be added together
without phase problems. This is an advantage over the deterministic case where the phase
difference between resonant and off-resonant contributions is important and changes rapidly
in the neighborhood of the resonant frequency f,.

4.1.5 Filter Bandwidth

One of the critical problems in the use of the response power spectral density method
is the finite bandwidth of the filter system, whether it be analog or digital. The finite band-
width of the filter will cause loss of resolution in the spectra with associated broadening of
the measured bandwidth of the resonant peak and overestimation of the damping-factor.
Filter bandwidth effects have been thoroughly investigated by Forlifer (ref. 11) for viscous
damping and by Wilby (ref. 6) for hysteretic damping. Therefore, detailed analysis of the
subject is not required here and only relevant results are presented.

Forlifer assumes rectangular filter characteristics so that the filter transfer function
&(f) has the form

f: f
®(f) = 1 fF-—47F-<f<fF+Azf-
=0 elsewhere.



The center frequency of the filter is f and the bandwidth is Afg. Now, if Af)y is the
measured half-power bandwidth of the resonant peak, which has an actual bandwidth Afy,
then Forlifer (ref. 11) shows that AfF, AfM, and Af A are related by the equation

Af Af Af Af Af
-1 F\_ ~-1{2™™M F\_ -1 M &8°F).
tan (AfA> tan (‘AfA+AfA tan” \ZF, AT, (26)
This reduces to the simpler form
(AfM>2 (AfF 2 | o7
Afp AfA) ’

if the trivial solution Afp/A fp = 0 is excluded.

For practical application, equation (27) can be rewritten in a more convenient form
that relates the filter bandwidth to the measured bandwidth. Then

(8) - (52) - (- i)
AV (AN (- : (28)
Sm/  \Alm (Afy/AfR)2

where § A/ Y M is the ratio of the true damping to the measured value. The curve for equation
(28) is plotted in figure 5 and can be used to correct measured damping factors. As an example
from the curve, the error in the uncorrected measured damping factor will be less than 14% if
the filter bandwidth is less than half of the measured resonance half-power bandwidth.

From figure 5, it is obvious that the narrower the filter bandwidth, the smaller the error
in the damping factor. However, there are other constraints on the filter bandwidth, the
most important of which is the statistical confidence in the data. The statistical reliability of
a spectral measurement can be defined in terms of the normalized standard error € = 1/ AfET
where T is the total sample length. Thus, for a constant value of ¢, or statistical reliability, the
total sample length must increase when the filter bandwidth is decreased. In practice, the true
bandwidth of the resonant peak will not be known until measurements have been made. Thus,
some form of iteration will be necessary in the selection of the filter bandwidth. The filter
bandwidth will also have to be a compromise between the resolution and statistical confidence
requirements. '

Additional discussion of the sample length will be presented in section 7.0, along with
other requirements on data analysis procedures. However, it can be noted at this stage that
the finite filter bandwidth problem is analogous to the truncation errors associated with
some of the other methods.
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4.1.6 Drift in Natural Frequency

A vibrating thin panel will generate heat due to internal dissipation of energy and will
cause temperature changes in the panel. The panel is generally surrounded by relatively thick
supports that will experience much smaller temperature changes. The differential tempera-
ture will cause thermal stress in the panel, and the resonance frequencies of the panel will
change accordingly. Such a drift in natural frequency was noted by Wilby (ref. 12) and was
also observed in the demonstration experiments of the present investigation. An exhaustive
investigation of such a phenomenon should include considerations of the thermal equilibrium
and thermal stresses of the panel and their effects on the vibration characteristics of the panel.
Such a complete investigation is beyond the scope of the present project and, instead, an
intuitive, workable model is presented here for investigation of the effect of drift of the
resonance frequency on the measurement of damping.

A linear system with constant natural frequency will have a frequency response function
H,(w) that is independent of time. Drift in the natural frequency w,, will give a time-varying
frequency response function Hy(w,t). The effect of such a drift can be easily observed
experimentally using discrete frequency excitation. When the panel is excited by a constant-
frequency pure tone, the drift in natural frequency will give a change in vibration amplitude
at the excitation frequency. When random excitation is used, the response amplitude will
have random phase that will mask the change in amplitude due to the drift in natural fre-
quency. Thus, the presence of drift in natural frequency will not be readily detected when
using random excitation. For a time-invariant system (as shown earlier), the response power
spectral density function will be proportional to |Ha(w)| , whereas, for a system with time-
varying frequency response function Hy(w,t), the response power spectral density function
will be proportional to the time-averaged (or mean) square of the frequency response func-
tion |Hy(w)| <.

—_— T
1
IHol,(w)l2 =T.£ IHa(w,t)lzdt,

where T is the data sample length.

Letw « denote the equilibrium (time-independent) resonance frequency of the system.
Then the drift in natural frequency can be represented as

Wy(t) = wiy +w'(t),
where
w'(t) << W' forall t.

Substituting w, (t) in the frequency response function and neglecting terms of the order
(w'(t))? and higher,

1
M, 2[A + Bw'(D)]

[Hy(w,0)]2 = (29)



where

2
= (gt 2 2 250 2,52
A= (W5 - w9 +48 o w
_ vr,2 2 » 2
B=4w, [w (2§a - D+ wi ]
As an example, IHO((QJ,t)]2 has been estimated for the following form of w'(t)

w(t) = wo'e'kt for t=>0

=0 for t<0.

Assuming small damping factors,
[Ho(w,H)|? = [Hy @) %(1 +e€)),

where |H (w)l2 =1/M 2A) = gsquare of the amplitude of the equilibrium frequency
response funct1on and error € =(1 /kT)loge [(A+Buwge 'kT)/(A +Bwy)l.

Substituting for B and A in the expression for €y, it can be seen that the error depends
on kT, nondimensional frequency drift w/w’ o’ , and the damping factor §,,. The error €] is such
that, in general, drift in the natural frequency will produce an average frequency response
function with a bandwidth that is wider than that for the corresponding time-invariant fre-
quency response function.

In practice, the error can be reduced by minimizing frequency drift using two approaches.

First, by keeping panel deflection at the smallest possible level, the heat generated in the panel
and the frequency drift can be kept to a minimum. Second, the thermal time constant of the
panel can be reduced by blowing low-velocity air over the panel. This is equivalent to increas-
ing kT in the above discussion.

4.1.7 N-Point Measurements
In general, the power spectral density method of determining damping factors uses a
single measuring location. The problem of off-resonant vibration in adjacent modes, and

background noise, could be alleviated by the use of several measuring transducers that record
the response simultaneously.

The displacement cross-power spectral density of an L-degree-of-freedom system can
be written as

L L
-2 Dt 657121, o
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where
[n@) = Hy @H @)y,
and I, is defined as in equation (18).
In equation (30) SWij = Sw()_(i,)_(j,w) and wnj = ll/n()_(j).

Now, }‘ij is a unitary matrix such that
L L iy *
2 2 NiSwNjq = Topbipg,
=1 i=1
where

5pq=1 forp=q

0 forp #q.

Multiplying the right side of equation (30) by the appropriate unitary matrix,

L L
*
Tppdpq = 2o 2= Bon Tnmpma,
n=1 m=1
where
L £
Bpn = Z%Apiwni.

1=

For a single-degree-of-freedom system,

and equation (33) reduces to

* L
Mppdpq = Xa Bpaﬁaq or Mpp = XalBaabaal-

3D

(32)

(33)

(34)

(35)

(36)

For a general case where I"mn can be represented by sum of L modes (corresponding

to L degrees of freedom),

37



and
L *
Mppdpq = iz:lxi Bpifiq

If the response is now measured at only N different positions, the cross-power spectral
density functions can be represented by an [N x N} matrix, i.e., the measuring system will
allow only N degrees of freedom and there are only N distinct values of npp’s. Thus, from
equations (35), (36), and (37), the following conclusions can be drawn:

a) For L =1, all the power will be concentrated in only one mode.
b) For L< N, one can separate the power in each mode.
¢) For L >N, the scheme will fail to separate contributions from different modes.

It should be noted that power g p represents the sum of the response power spectral
densities in a particular mode at the N measuring locations. In practice, in a given frequency
range, there are only a few modes with significant contributions. Thus, the condition L € N
can be effectively satisfied. In practice, with the advances in digital data processing, the
response power spectral density matrix can be calculated readily. The matrix diagonalization
can be achieved easily with the use of a computer.

The method appears to have certain advantages for resolving close natural frequencies
and damping factors in the presence of high background noise. For all other applications, the
method is considered to be unduly complicated when compared with the single-point
measurement of the power spectral density method.

4.1.8 Summary

The basic characteristics of the displacement power spectral density method for damp-
ing measurement have been discussed with particular reference to a panel exposed to a mov-
ing airstream. In principle, the method is straightforward, requires no excitation other than
the turbulent airflow, and has no instrumentation requirements other than those normally
associated with the measurement of panel response to turbulent airflow. However, there are
a series of problems in practice—statistical coupling, off-resonant vibration, background noise,
filter bandwidth, and drift in the natural frequency—that have to be evaluated with respect
to other methods.

The influences of these problem areas on the accuracy of the damping measurements
have been discussed, and methods of alleviating the problems have been proposed. Suitable
positioning of the measuring transducer can emphasize the vibration in the mode of interest,
and errors caused by background noise and filter bandwidth can be corrected by the use of
appropriate correction charts. For optimum location of the transducer, some initial knowledge
of the panel mode shapes is required. This is not difficult for laboratory structures but may
pose problems for large, complicated structures of typical aerospace construction.
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In general use, only the response power spectral density is measured. This is adequate if
the excitation power spectral density is constant (or approximately constant) in a frequency
range close to the natural frequency of interest, but measurements should be made of the
pressure field to confirm the assumption.

The use of a multipoint measuring array has been proposed as a way of reducing the
effects of background noise and close natural frequencies. However, the use of such arrays
involves considerable analysis problems that detract from the value of the method for general
application.

One problem, the drift of panel natural frequencies, is really a problem of the test speci-
men rather than the analysis method. The drift would introduce measurement errors in all the
test methods and the only satisfactory solution lies in the correct design of the experiment.

4.2 RESPONSE AUTOCORRELATION FUNCTION

4.2.1 Introduction

The response autocorrelation method uses the decay rate of the autocorrelation function
as a measure of the damping of the system. Thus, the approach is similar to the deterministic
method where the damping is estimated from the reverberant decay of the vibration when the
excitation is removed. For the ideal case of a single-degree-of-freedom system, the method
has obvious practical value, but for multimodal systems, such as a panel, the method has
several limitations. These limitations will be discussed in the analysis where it will be assumed
that the vibration of the panel results from exposure to the airflow and that no secondary
excitation is intentionally introduced.

4.2.2 Basic Analysis
The basic theoretical analysis for a rectangular panel exposed to random excitation,
particularly that due to a turbulent boundary layer, has been discussed in detail by Rechtien
(ref. 13) and Wilby (ref. 6). Consequently, the present analysis will provide only an outline
of the method.
The displacement autocorrelation function for the panel has been shown in equation (14)

to be

Ry (x,7) =§ %Wa(x)wﬁ(z) LL ‘Pa(z')ﬂllﬁ(z_(")L:Ha*(w)Hﬁ(w)Sp()_c',ﬁ",w)ei“"dwd)_(’d)_(". (38)



The integration with respect to w can be performed by contour integration, provided
that Sp(x’ x" ,w) is of order less than w3, When 7 20,

Oy * vom . al om0 %a” f .
‘[ _Hy @Hg@S,(x"x W' PTdw = MaMgegDeg] IS“ sin(gT + 0)

. (39)
+ Sl cos(w g7+ oag)} ,

where
SarE Sar()_(‘;_)_(”,wd + iwa §a)
Se' = Sal(x'x ", Wy + iwg, $)
Sp(x"x ", Wy +iwg 8a) = Suf ~iSy!

Dﬁ‘Dé+1D 5

= @o = W) - 20,8, @Sy + W) + 2icogley Sy + wyp)

D} -D }
Sin _g_@_ > cos g, - b
o D, ﬁ' of ,Daﬁ|
and wg = wa\}l - faz is the natural frequency for damped free vibrations.
To advance further, assume that the dampmg is small so that w,, §, << wg and
Sy(x" X", wq +iwy §o can be replaced by S (x x" wd) Then Smr becomes C (x x",wy)
and Sa becomes Qp(x x",wd), where
Sp(§'9§"9w) = Cp()_('s)_(_ ")w) _lQp()_(’s).s ”’w)'
Also, since, by definition, the autocorrelation function is symmetﬁcal about 7 = 0, the solu-
tion to equation (38) can be extended to include all 7if 7 is replaced by|7] in equation (39).
Thus,
-w, & |7
_ 2me X« : e | "
Ry,(x,0 —20;2 My Mo Decg| ACIRHEY f f Va (X W(x") | Cp(x"x".wg) sin@ql7l +60)
’ n l ! ”n
T Qpx'x ") coslaxg 7|+ B5)(dx'dx

forall .
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It has been shown (ref. 6) that

LIAEIJQ(&') ‘pa(’-‘")Qp(’.",’_‘ ",(a))d)_('dé" =0,

so that
ne‘wa §a"r' 5
Ry (x,7) =§2M W9y Vo (%) j/; jl;dza(gc')\lla@")Cp()_(',)_(” wq)sin@glt| + 6, )dx’'dx"
—wWh a7l
2me aa ' "

LN Mgl Ya S Ju v 40)

:Cp(g',g",wd)sin wqll + 901/3) + Qp()_(',)_(",wd)cos(wdlrl+ eozﬂ) dx’dx”
for all 7.

Equation (40) shows that the response autocorrelation function for the panel displace-
ment is a sum of contributions from all normal modes plus additional cross terms associated
with the statistical coupling of the modes. Some simplification has to be achieved before the
method has a reasonably practical form.

From (ref. 6), when the natural frequencies are well separated and the damping is small
(ga << 1), the cross terms can be neglected. When the natural frequencies are close together,
the conditions for small cross terms are more difficult to establish but are similar to those
associated with the displacement power spectral density function.

Neglecting cross terms equation (40) becomes

Tre"waga ITI

Ry(x.0= 3 7 Yo sin@glr] + 6y
XM 2wy Sl - D"

(1)
S £ 000,06 5 opdx .

From equation (41), the autocorrelation function is a sum of the contributions from the
different modes and it is difficult to estimate the damping coefficient unless the vibration due
to one mode can be isolated. This can be achieved to a certain extent if the natural frequencies
are widely separated and the vibration in the vicinity of one natural frequency can be effec-
tively isolated by filtering. The integral term in equation (41) is the joint acceptance term in
equation (17) for the displacement power spectral density function.



If the vibration for one mode can be isolated, then the autocorrelation function becomes
an exponentially decaying sine function where the decay rate is proportional to the damping
and the sine function has a nonzero phase angle. For small damping O ™ w/2.

From equation (41), the autocorrelation function for a single-degree-of-freedom system,
such as a dashpot, is

wafa, ,
in(wqltl+6,.)
R, () = — el “1/‘: Spq): 42)
2M,2wo 3t (1 - 52

4.2.3 Multimodal System With Close Natural Frequencies

The autocorrelation function Ry (x,7) for a multimodal system has been obtained in
approximate form in equation (41) where the cross terms (a # ) have been neglected. When
a single mode can be considered alone, the autocorrelation function can be used to calculate
the modal damping, but when there are two or more modes with close natural frequencies,
modal isolation is not possible.

Consider the case of two modes of a panel where the natural frequencies are closely
spaced. Using the approximate form for the displacement autocorrelation function (equation
(41)), the autocorrelation for the two modes can be written as:

Ry (%7 = Agsin(gglrl + 6yq) + Agsingglrl + 05p), 3)
where
wa2()-()ne"*’a§a|7| | " N | '
) M 2ot - §a2)1/2 J‘;J:A‘pa()s W (xMCH(x%",wgg)dx'dx",
and

7.
Wi = Wall - f012) ’

Similar definitions hold for AB and w4g-
To illustrate the relative importance of coefficients A, and Ag, assume that 6y, = g5 =0
for closely spaced modes since it is unhkelj that the dampmg of tﬁe two modes will differ by

a large amount (6,4 = tan—1{(1 - §52)"%/&,]). Then, for 7 >0, equation (43) becomes
oo o o

Ry, (X,7) = A_sin(w,7+ 0) + Agsin(w i, T+ 8)
wid o da B dg

where A and AB are always positive.
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Letting wyg = Wy + @', then
(A 2 2 % _
Ry(x, 1) =(Ay" t+ _AB + 2AaAﬁcosw"r) sm(wda‘r+ 0 + ¢(1), 44)

where tang(7) = (Aﬁsinw"r)/(Aa + ABcosw"r).

Thus, ¢(7) acts as a varying phase angle and 2A,Agcosw'r causes beating of the ampli-
tude of the autocorrelation function, varying from A, + Ag to A, - Ap. The maximum error
in the autocorrelation amplitude will be A 5. These results are similar to those of White (ref.
14) for the impulse response function.

To demonstrate the effect of close natural frequencies on the displacement autocorrela-
tion function, equation (43) has been evaluated for two modal pairs of a 30.48- by 17.78-
by 0.102-cm (12- by 7- by 0.04-in.) simply supported panel exposed to Mach 2.0 airflow and
a boundary layer displacement thickness of 0.589 cm (0.232 in.). The method of reference 6
was used to calculate the terms A, and Ag. In one example (fig. 6), the mode pair is a = (3,1),
B=0,2) and the damping is assumed to be { = 0.007 = {3. For the second example (fig. 7),
a=(2,2), =(4,1), and the damping is again {, = 0.007 = 5‘3. The data in figures 6 and 7 are
plotted in terms of the normalized autocorrelation function or autocorrelation coefficient,
and the autocorrelation curves are compared with the corresponding curves for mode « alone.

Figure 6 clearly shows the beating between the contributions from the two modes, and
experimental data of this type would indicate the presence of more than one mode. However,
in figure 7, for the time-delay range shown, the beating phenomenon is not evident, and
experimental data in this form could be interpreted as being associated with a single heavily
damped mode. Thus, it is essential that, for proper evaluation of the data, the maximum time
delay Ty in the autocorrelation function must be sufficiently large to indicate the presence of
more than one mode. To identify one period in the beat signal, 7,;, must be greater than
2m/w’. In figure 6, 2m/w’ = 12.45 milliseconds, Trn 18 17.3 milliseconds, and the beat can be
identified. In figure 7, 2m/w' = 22.57 milliseconds and 7, is 12.6 milliseconds, so the beat
cannot be identified.

In practice, the dominant factors in the coefficients A, and Ag will probably be the
mode shape functions y,(x) and Yj5(x), and choice of measuring position x will have an
important influence on the form of the autocorrelation function. For the examples in
figures 6 and 7, a location X] = 5.08 cm (2 in.), x3 = 4.45 cm (1.75 in.) was chosen.

4.2.4 Band-Limited Signal

For the multimodal system, it has been shown above that the presence of more than one
natural frequency has a distorting effect on the single-mode autocorrelation function. Even
in the case of two modes, the distortion can cause large errors in the damping estimates.

In practice, the effects of neighboring natural frequencies can be minimized by the use
of filters, although this method has very limited application. The filters exclude vibration at
frequencies away from the natural frequency of interest and should have steep cutoff



characteristics. However, since the filters cannot exclude off-resonant vibration contributions
at the natural frequency under investigation, they can be used successfully only if the ratio of
resonant to off-resonant vibration is large. The use of filters may introduce adverse effects on
the autocorrelation function if the bandwidth is too narrow. Thus, an optimum filter band-
width has to be selected.

The effect of filter bandwidth on the autocorrelation function of the mode of interest
can be investigated using a single-degree-of-freedom system as the model. The narrowband
vibration signal could be the result of introducing a band-pass filter in the excitation or in the
response. If the narrowband autocorrelation function is denoted by Rw(r; Aw), then

Ry(; 809 = [~ @@IHy @Syl Tdw. (45)

The function &(w) represents the filter, and, for a rectangular filter,

dw) =1 wl<Iw|<w2
(46)
=0 elsewhere.

If it is assumed that, within the filter bandwidth, the excitation pressure power spectral
density function has a constant value Sp, then equation (45) reduces to

Ry(r: 80) = S, [~ @IH @) %% o, 47)
Evaluation of the integral in equation (47) is discussed in appendix A.

The problem is similar to that discussed by Kandianis (ref. 15) for the excitation-
response cross-power spectral density method. Using the approximations of Kandianis, the
presence of the filter modifies the autocorrelation function by the addition of terms that
include functions of the form (cos wz‘r)/r and (sinwz-r)/r, which decay rapidly as 7increases.

4.2.5 Background Noise

Background noise can occur either as an additional excitation or as electronic noise in
the equipment used to measure the vibration. The effects of the noise signals on the response
autocorrelation function for a single-degree-of-freedom system have been discussed by
Kandianis (ref. 16) and the results can be incorporated in this discussion.

Considering first the excitation, assume that a second signal p,(t) is superimposed on
the initial signal pj(t) and that the two signals are mutually uncorrelated. Then, from equa-
tion (16), the response autocorrelation signal is

Ry () = j(;wj:oh(‘rl )h(75) [Rpl('r T -7+ sz('r + 7 -1)ldrpydr.  (48)

Thus, the displacement autocorrelation function for the noise-free excitation, equation (16),
is modified by the addition of the noise autocorrelation function to the pressure autocorrelation
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function. The change, as expected, is a parallel of the effect demonstrated in equation (21)
for the displacement power spectral density.

If the signals pj(t) and p,(t) represent white noise,
Rpl('r) = 21rSp18(1'),
sz(T) = 21rSp26(1'),

and

00 ~ 00
Ry(1) = 27(Spy +S52) j; I herhryser + 1) - ) dr,. (49)
In equation (49) Spl is replaced by [Spl + sz] , which has the effect of simply magnifying
the autocorrelation function.

As an alternative to equation (48), the autocorrelation function can be written in the form
- 2 iwT,
Ry = [ Hy@I? [S51@) + Sp(@) e¥deo, (50)

where there are now no restrictions on the excitation power spectral density functions, and
[Spl(w) + sz(w)] replaces the term Spl(w) found in the noise-free equations.

Referring now to the multimodal system associated with a panel and assuming that the
statistical coupling cross terms can be neglected as in equation (41), the effect of the second
(noise) excitation is determined by the real part of the cross-power spectral density function.
Using equation (41) as the reference, the integral

_&.& Y (X (x") Cp(x', X", w)dx'dx ",

associated with the noise-free case, becomes

{jp“ wa()-(,) ‘l’a(’.(")[cpl(’éls ZS",W) + sz()-(:’ )‘su’ w)] d)_('d)_("

when noise is present in the excitation. Here the effect of the noise signal depends not only
on the power spectral density, but also on the spatial correlation in relation to the mode
shapes of the panel. The function C 2()_(', x",w) represents the real part of the complex cross-
power spectral density function associated with the noise signal.

When noise is present in the response system, there will be no influence on the panel
vibration, and the noise will appear as an additional term in the autocorrelation function. If
R (7) is the autocorrelation function associated with the noise in the response system, and if
the autocorrelation function for the vibration is denoted by Rw'(‘r), then the measured auto-
correlation function will be

R, (M = R,/ (1) + R (7). (51)



If the noise signal n(t) is broadband white noise with power spectral density S, then
R, (1) =278,8(7), (52)

where 6(7) is the delta function. Therefore, the measured autocorrelation function differs
from the noise-free correlation only when 7= 0, at which time delay the noise introduces a
delta function spike.

In practice, it is more likely that the noise will resemble band-pass noise rather than
wide-band noise. The autocorrelation function then becomes

Rn(r)=2sn[ T (53)

sin woT  sin w|T ]
where w5 and wy are the upper and lower cutoff frequencies, respectively, for the band-pass
filter. If noise of the type represented by equation (53) is present in the measurements, it _
will be difficult to make suitable corrections to the data. Thus, if R,(7) is a significant fraction
of Ry,(7), the damping measurements will show appreciable errors.

4.2.6 Summary

The response autocorrelation method involves analysis of the vibration in the time do-
main, and this results in additional complications when compared with frequency domain
analyses. Analyses of the basic characteristics of the method show that severe problems will
occur in practice unless the natural frequencies of interest are well separated. In such cases,
the vibration in the neighborhood of a given natural frequency is due essentially to only one
mode. Unfortunately, these very restrictive conditions are satisfied by very few modes of a
structure, even a simple panel.

In an attempt to isolate the vibration of one mode, the use of band-pass filters has been
suggested. Here a compromise has to be reached so that the filters have a bandwidth wide
enough not to distort the results for the mode of interest, yet narrow enough to exclude
vibration from other modes. Irrespective of filter characteristics, they will not exclude off-
resonant vibrations within the band-pass frequency range. Thus, the filters are of little use
unless the resonant vibration is large with respect to the off-resonant vibration.

Background noise, either in the excitation or the response, can cause errors in the damp-
ing measurements. This is particularly true if the noise is in the response signal. However, if
the noise in the excitation has a constant power spectral density within the frequency range
of interest, the associated errors in the measured damping will be negligible.
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4.3 EXCITATION-RESPONSE CROSS-POWER SPECTRAL DENSITY

4.3.1 Introduction

The excitation-response cross-power spectral density method was proposed by Clarkson
and Mercer (ref. 17) and is the stochastic equivalent of the response amplitude phase method
(see Kennedy-Pancu, ref. 4) for discrete frequency excitation. Phase information, which is
not used in the response power spectral density or autocorrelation methods, is used in the
cross-power spectral density approach. Therefore, at least in principle, the method is
capable of separating contributions from off-resonant modes and background noise. However,
in practice, several limitations are imposed on the method, and these limitations are discussed
in this section.

When studying structural response in the presence of an airflow, a severe limitation
arises because of the inability to measure the excitation and response fields simultaneously.
Introduction of a microphone would disturb the flow field or require modifications to the
structure. Thus, it is necessary to provide a second excitation that can be used as a reference.
The pressure field due to the airflow then takes on the role of unwanted noise as far as the
damping measurement technique is concerned, and the problem of signal-to-noise ratio
becomes very important,

4.3.2 Basic Analysis

The basic analysis for the method will be performed under the assumption that there is
only one excitation present, and this excitation will be used as the reference signal. Thus,
the system is identical to that shown in figure 1a.where the excitation signal is p(x’,t) and
the response of the system is denoted by w(x ,t). It is assumed in the analysis that the excita-
tion is applied at a single point rather than being distributed over the panel, but this assump-
tion is not necessary in general. The cross-power spectral density function relating the excita-
tion and response can be represented by the equation:

SW,p()-(! )_(,’ w) = W(L(: w) P*(Z W), (54)
where W(x, w) and P(x’, w) are the complex Fourier ampli-tudes of w(x, t) and p(x', t)

respectively, and the asterisk denotes the complex conjugate. From equations (8), (9), (10),
and (11), '

W) = 224, (6) Hof) S, 00 P, dx.
Substituting for W(x, w) in equation (54),
Sw.p% X4) = H@ Va0 f, 856 4,065’ - 1) dx .
=2 Ho) Vo () ¥, (XS fe0),

where Sp(co) is the power spectral density of the pressure signal at x'.



The right side of equation (55) indicates that the cross-power spectral density function,
which is complex, depends on the frequency response function Ha(w), the mode shapes
xl/a(>_<) of the panel, and the excitation force. The two mode-shape terms will give a multi-
plying factor that determines the efficiency with which the vibration is being excited and
measured. For example, if the point of excitation and the location of the measuring probe
are at antinodes of the mode being measured, then tl/a()_g') = Yp(x) = 1 and the measured
cross-power spectral density function will be a maximum for a given excitation force.

Conversely, if the exciter or measuring transducer is located at a node of a given mode,
then no vibration will be recorded in that mode. These properties are valuable in practice for
augmenting or suppressing the response in a particular mode.

If an excitation force with constant spectrum level is used, then S_(w) will be independent
of w and the excitation-response cross-power spectral density function will be directly pro-
portional to the sum of the frequency response functions of all modes. Comparing equation
(55) with equation (20), note that the cross-power spectral density function does not contain
the double summation present in equation (20) for the response power spectral density func-
tion. Cross terms that arise from the statistical coupling in the power spectral density function
are absent in the excitation-response cross-power spectral density. However, the frequency-
dependent term H,(w) will still impose filter bandwidth requirements if adequate resolution
is to be achieved in the data reduction of the cross-power spectra.

At some stages in the subsequent analysis, it will be convenient to refer to the non-
dimensional cross-power spectral density function Fw p()_<, x',w), which is defined as

Sy .p(¥: X' w)
[Syw) - Sp)) /4

r X', w)=

wp®&X (56)

The function C'w p()_(,>_t.’, w) is a measure of the coherence between the excitation and response.

For a single-mode system, the dimensional and nondimensional cross-power spectral
density functions for a single excitation and the associated response are

S, p(%:X " W = Hy@ P (Y (378 ) (57
and
Py p®: X9 = Hy@¥ (09,8 | 5355 (58)

Since Sw(X,w),y, the displacement power spectral density in mode «, is proportional to
IHo[(w)l2 , then I, p()_(,)_g’,w) is proportional to H,(w)/ [Hg ().
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4.3.3 Background Noise

As stated earlier, one important problem when applying the excitation-response cross-
power spectral density method to a panel exposed to turbulent airflow is the difficulty in
measuring the excitation. To overcome this problem, the introduction of a second excitation
has been proposed (refs. 6 and 18) as the reference signal. The system then resembles that
shown in figure 1b where the boundary layer pressure field p(x’,t) is regarded as undesirable
noise and the signal p5(x",t) becomes the reference signal. |

The modified cross-power spectral density function can be determined following the
approach of section 4.3.2, except that the panel total displacement now depends on two
excitations, only one of which (p;) is being measured. If pj(x’,t) and py(x",t) are assumed
to be statistically independent, the nondimensional cross-power spectral density function
for a single mode becomes

V() V(8" 1S5 /2 H )
[A25,1 @150 14+ Y02 (") Spoe)] 12 Y oM@

Py, p2(%:x", @)y =

When [Azsp l(w)Ja a(w)/ 4] is much smaller than [wa2(>_(")Sp2(w)] , which means physically
that the panel vibration is due mainly to the introduced excitation p2()_<",t), then
| p2(>_<,§",w) in equation (59) tends to the noise-free form in equation (58).

If noise n(t) is introduced into the response, as indicated in figure 1c, and n(t) is
assumed to be uncorrelated with the vibration w(x,t) and the excitation p5(x”,t), then the
measured nondimensional cross-power spectral density function for mode « will be given by
the expression

Va®) Ve () [Spp@)1 /2 H ()
H @) 40 2(0) A5 @)@ /4 + ¥, 2(x"S 5] + S| 112

Fw’pz(_)_(’&" :w)a = (60)

|
Equations (58), (59), and (60) all have the same numerator which, apart from the omis-
sion of a factor [S 2(w)) 1 , is the dimensional cross-power spectral density function relating
excitation p5(x”,t) and panel displacement. The differences between the three equations occur
in the denominator which, in the form shown, is the square root of the response power spectral
density. Since the addition of noise in the excitation or response increases the measured

response power spectral density, the nondimensional cross-power spectral density decreases
as the noise increases.

The decrease of Ty, ,o(x, X", w), as the noise increases identifies an important problem
area for the case of a panél? excited by a moving airstream, namely, the accurate measurement
of small correlation coefficients or functions obtained from large signals. To perform the data
analysis with sufficient accuracy, it is necessary that the data reduction system should have
high amplitude resolution and large dynamic range. For a given instrument system, the
dynamic range will be constant and the maximum signal will be determined by the vibration-
plus-noise signal. Only a small fraction of this signal will be correlated with the excitation
reference, thereby creating a signal processing problem.



4.3.4 Multimodal System

The excitation-response cross-power spectral density function for a noise-free, multi-
modal system is given in equation (55) as

Suw,p(:29) = 3 ¥y ()9, 8 HoIS @) 6

Comparing this equation with the corresponding equation for the displacement power spectral
density function (equation (20)), the main advantage of the cross-power spectral density can
be identified.

In equations (20) and (61), the value of the function at a given frequency is determined
by a summation over all modes. For the power spectra, each modal contribution is propor-
tional to the real function IHOI(@J)[2 and is added algebraically to the other contributions. In
contrast, the modal contributions to the cross-power spectral density are proportional to the
complex function Hy(w) and are summed vectorially. The vectorial addition is the direct
equivalent of the Kennedy and Pancu method (ref. 4), and permits separation of the resonant
vibration from the off-resonant/noise components. This identifies the advantage of the cross-
power spectral density method.

From equation (61), if S_(w) is essentially constant, the locus of the measured cross-
power spectral density function will be a constant multiple of the frequency response func-
tion obtained from the Kennedy and Pancu method with discrete frequencies. Properties of
the frequency response functions discussed in section 3.3 will be equally applicable to the

cross-power spectra, and resonance circles can be drawn as an aid to the measurement of modal

damping. This technique corrects for the presence of off-resonant and noise contributions.

The nondimensional cross-power spectral density function for the multimodal system
can be obtained by following the procedure outlined in section 4.3.3 and using equation (61).
The nondimensionalizing factor [S_(w) S,,(x, w)] 12 in equation (58) will be replaced by
{S. (W - § Sw(>_(,w)a] 1 , thereby reducing the value of the nondimensional cross-power
spectral density function.

4.3.5 Filter Bandwidth

The fundamental quantity being measured in the cross-power spectral density method is
the frequency response function H,(w). Thus, one of the problems in the data reduction will
be the loss of resolution due to the finite bandwidths of the analyzing filters. Essentially, the
problem is similar to that encountered in the power spectral density method. In practice,
the cross-power spectral density function can be determined in two ways that will be referred
to as the direct and indirect methods. If digital techniques of data analysis are used, the
direct method indicates that the Fourier transforms (or complex Fourier amplitudes) of the
time series are computed and multiplied together to give the cross-power spectral density
function. The indirect method first computes the excitation-response cross-correlation func-
tion and then Fourier transforms the correlation function to obtain the cross-power spectral
density function. Again, referring to digital techniques for data analysis, the filter bandwidth
is relatedto the data sample length for the direct method or maximum delay time for the
indirect method.
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Considering first the direct method, the filter bandwidth requirements can be established
using the discussion in section 4.1.5 as a guideline. For a filter with rectangular characteristics,
the error in the damping measurements obtained from the power spectrum is shown in figure 5
as a function of filter bandwidth and measured half-power bandwidth. In practice, the filter
characteristics in the direct method will be determined by the presence, or absence, of data
smoothing but will differ from the ideal rectangular shape. Filter bandwidth is discussed further
in section 7.0.

The filter bandwidth problem for the indirect method has been discussed by Clarkson
and Mercer (ref. 17) and Soovere and Clarkson (ref. 19) in terms of truncation, which is the
equivalent time domain problem. As will be seen in section 4.4, truncation problems occur
also in the single-sided Fourier transform method.

In the indirect method, the theoretical excitation-displacement cross-power spectral
density function Sw (x, x',w) is obtained as the Fourier transform of the cross-correlation
function R, p(§,§',r , where

. = _1_ [ -iwT,
Sw,p&X.w) =577 [T Ry p0ex e, (62)
However, in practice, it is not possible to measure Ry, p()_(,)_(',T) for an infinitely long time

delay, and the function must be measured for a finite range, say ~Tm < 7< 7py- The computed
cross-power spectral density function is then

[ - _1_ o ’ “lwT ‘
Sw,p(6% 0 Ty) = 7 [ D) Ry, (x',me7ar, (63)
where D(7) is a weighting function, or lag window, such that D(r) = O for lr] > Tm
Alternatively,
S, p( %503 T = [ €79 Sy plxxteandes (64)
where
1 i '
- = =— FDeilw -1y
¢ (w-w) =5 f_: (Me r
and is called the spectral window. ®(w -w’) represents the filter characteristics referred to above.

For the case of single-point excitation, as considered in section 4.3.2, and assuming
constant excitation spectral density, equation (64) can be written in the form

Sw,p(x:x'@3Tm) D Koy (5% [7 (- ) Hofwdw” (65)

The form of the lag window D(7) can be selected from several standard representations.
Clarkson and Mercer (ref. 17) selected the rectangular lag window

D(n) =1 IS Ty
(66)

=0 elsewhere.



As a modification, Soovere and Clarkson (ref. 19) use the Bartlett triangular window,

o =1-H i<y
m (67)
=0 elsewhere

since this is more reliable, statistically, than is the rectangular window. In both cases, the
effect of truncation is determined with respect to the parameter (1/p)(ds/df) where p is the
radius of curvature of the cross-power spectral density curve at resonance and ds/df is the

rate of change of arc length with frequency at resonance. Assumiqg small damping, ¢ a2 << 1,
Clarkson and Mercer (ref. 17) show that

-, 8T
ds _ 4am|l-¢ °‘O‘m[1+wa§arm+wa2§a21m2/2]’

1d
P df wazx 1- e-wa§aTm (l+wa g‘a-rm)

(68)

and a similar equation is derived by Soovere and Clarkson for the triangular lag window. Curves
of (1/p)(ds/df) as a function of ‘*’aga and 7, can be used as a means of correcting for trunca-
tion (or filter bandwidth) errors. Examples of such curves for the rectangular and triangular

lag windows are contained in figure 8. The curves show that, for a given maximum time delay
T the error created by the rectangular lag window is less than that due to the triangular
window. This is expected since the equivalent bandwidth of the triangular lag window is

larger than that of the rectangular window, for a given value of 7,.. The advantage of the
triangular window lies in the improved statistical reliability.

Some simplification of the curves is possible if it assumed that the filter bandwidth Afg
is a fraction of the resonance bandwidth Af,,i.e.,

_1
Afp == Af,.

From reference 20, the effective filter bandwidth for the rectangular lag window can
be taken as

Afg = ?2—1_;
Then
W, 8Ty = 07/2

and

dds..

p df (da a‘l’(n)
where

\P(n)=[1 —e'n”/2(1 + nw/2 + n21r2/8) . (69)
| 1-e2 (1 + nm/2)
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The curve for ¥(n) is shown in figure 9. At low values of Afa/AfF (less than 3), the
curve for ¥(n) indicates larger errors in the damping measurement than are predicted by
figure 5 for the rectangular filter.

The above discussion on truncation errors has assumed that the instrument is ideal in that
there are no dynamic range or noise problems. In practice, there will be a dynamic range prob-
lem when the time delay exceeds a certain value that will depend on the equipment. Any cor-
relation information obtained for time delays in excess of the critical value will be spurious,
and the critical time delay will determine the maximum useful time delay.

4.3.6 Summary

In concept, the excitation-response cross-power spectral density method has several
highly desirable features that result from the inclusion of phase information. Using the excita-
tion force as a reference, the response vector diagram can be drawn and the effects of back-
ground noise and off-resonant vibration minimized. Additional benefits arise if the point of
application of the excitation can be varied, thereby suppressing vibration in certain modes.

When the method is applied to the case of structural response to a moving airstream,
measurement of the excitation force becomes a significant problem. If the aerodynamic pres-
sure field is used as a reference, a measuring transducer has to be located in the airstream or in
the surface of the structure. In either case, the experimental environment would be changed.
As an alternative solution, a second excitation can be introduced to act as the reference, and
the boundary layer excitation then takes on the characteristics of unwanted noise. However,
under these circumstances the problem of signal-to-noise ratio becomes important. The vibra-
tion induced by the second excitation has to be significantly greater in amplitude than that
induced by the aerodynamic pressures if reasonable accuracy is to be achieved in the damping
measurements. To satisfy this requirement, the second excitation force must be large, with
resultant dynamic range problems in the instrumentation. If the test panel is enclosed by a
pressure equalizing chamber, difficulties may arise in locating the exciter within the chamber.

4.4 RESPONSE SINGLE-SIDED FOURIER TRANSFORM METHOD

4.4.1 Introduction

The important characteristic of the single-sided Fourier transform method is that it uses
phase information that is hidden in the power spectral density and autocorrelation function.
The method was introduced by Kandianis (ref. 16) as a means of reducing the effects of noise
interference in the analysis of transient signals. However, the theoretical background applies
strictly to stationary signals and, for simplification, the characteristics of the signals are usually
assumed to be those of white noise.

In operation, the method computes the response autocorrelation function, either directly,
or indirectly via the power spectral density function, and then performs Fourier transformation
on half of the autocorrelation function (e.g., for 7 2 0). The resulting single-sided Fourier



transform is a complex function of the frequency response function H(w), and the damping

can be estimated from the complex plane diagram in a manner similar to that developed by

Kennedy and Pancu (ref. 4) and used in the excitation-response cross-power spectral density
method (sec. 4.3).

Discussion in this section will be concerned with vibration induced by random excitation
such as the turbulent boundary layer. Application of the method to transient excitation
techniques where a second excitation is introduced will be discussed later in section 5.0.

4.4.2 Basic Analysis

The basic properties of the method can be demonstrated most easily by a single-degree-
of-freedom system. The displacement autocorrelation function for such a system has the form,
from equation (42),

”e"‘*’afa,'r'
Ry, (M) = m sin(wdl‘rl + oaa)sp(“’d)' (70)

M 2w ol - Sod)

Then the single-sided Fourier transform is defined as
1 —-iwr, |
Fw(w) = 2‘”.'; RW(T)e dr. (71)

Substituting equation (70) in equation (71), F,(w) can be evaluated using standard
integrals, and

o)
F. (W) =—2P 2t +iLH 72
W@ TS (o 1o [Ho) (72)
=1s wyH 21+—‘*’1 w4 2 73

As expected from general principles, the real part of F (w) is half of the displacement
power spectral density function and is proportional to |H (w)l Thus, the real part can pro-
vide estimates of the damping in precisely the same way as in the power spectral density
method. However, the advantage of the method lies in the combined use of the real and
imaginary parts in the form indicated by equation (72).

The locus of Hyw) in the complex Argand plane has been discussed in section 3.3 where
it was stated that H,(w) was a circle only for the case of hysteretic damping. For viscous
damping, the frequency response function is approximately a circle in the neighborhood of
the natural frequency when the damping is small. Similar restrictions apply to the function
Fy(w) of equation (72).
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Using the Kennedy and Pancu method (ref. 4), estimates of the damping coefficient are
obtained from the locations of the half-power points of Hy(w). This is an approximation that
is valid for light damping and it is again valid for the function F(w). To demonstrate the validity
of the approximation, consider a parameter X defined by

2

I W
Then X can be assumed to be equal to 2 (which gives the half-power law) within an accuracy
of about i'a/ 2 for hysteretic damping and 3§'a/ 2 for viscous damping. In the case of the single-
sided Fourier transform F(w), the error in X is approximately 2§a. Thus, for the single-degree-
of-freedom system, the single-sided Fourier transform and the excitation-response cross-power
spectral density methods are closely allied.

The single-sided Fourier transform method can be extended to include the multimodal

case typical of panel vibration by the use of equation (40). Substituting equation (40) in
equation (71),
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where w, Da g sin 9"‘3’ and cos 6013 are defined in section 4.2.2 for equation (39).

Immediately obvious in equation (74) are the cross terms (a# §), which are absent in the
excitation-response cross-power spectral density function but do occur in the power spectral
density function. The joint terms (« = 8) pose no problem since they represent a sum of terms
of the type Ka(2§a + iw/wa YH,,(w) where the parameter K, is a function of mode shape and
measuring location and is independent of frequency w. Thus, for small damping, the locus of
the joint terms can be analyzed in a straightforward manner using the complex Argand diagram
and constructing resonance circles at the natural frequencies. The practical application of the
method to a panel excited by turbulent airflow depends on the magnitude of the interference
from the cross terms.

When the natural frequencies are well separated, the function(cos )lDaBI is of order
W2 and(sin oaﬁ/) IDaBI is of order faw'z. Thus, if §,, << 1, these functions can be



considered small relative to the joint term of order {a"lw'z. However, when the natural
frequencies are close together, 6, 8 and D, g approach the corresponding joint term values
Oaq and Dgq, and the influence of the cross terms will depend on the measuring location x
(through tpa()_(), xpﬁ(g)), and the integral terms.

4.4.3 Background Noise

The effects of noise on the damping estimates obtained from the single-sided Fourier
transform method have been discussed by Kandianis (ref. 16) for a single-degree-of-freedom
system. From equation (50), noise in the excitation, if it is uncorrelated with the excitation,
is additive in terms of the power spectral density functions. Noise in the response, if it is
uncorrelated with the response, is additive in terms of the autocorrelation function—equation
(51). Translating these effects into the single-sided Fourier transform function of equation (72),
then

Fo@) == (5 @g) + S (28, + &2)+ S, (75)
48 oo My *

The presence of the noise py (D in the excitation increases the coefficient of H(w)(2§, +
iw/w) but has no influence on the damping estimates. Noise n(t) in the response signal shifts
the plot of F,(w) along the real axis. In principle, if S;,(w) is constant, the accuracy of the
damping measurements is again unaltered, but, in practice, if n(t) is large so that the dynamic
range constraints of the instrumentation become important, accuracy may be impaired.
Further, if S, () varies in the neighborhood of a natural frequency, additional errors will
appear in the damping estimates.

4.4.4 Truncation Errors

Truncation errors, encountered when the excitation-response cross correlation function
is transformed into the cross power spectral density function, are discussed in section 4.3.5
as an equivalent of the resolution losses associated with finite bandwidth filters. The single-
sided Fourier transform method is also susceptible to truncation errors associated with the
transformation of the autocorrelation function.

The truncation errors arise because it is not practical to compute the displacement auto-
correlation function for infinitely long time delays. Thus, equation (71) for a single-degree-
of-freedom system becomes, in practice,

D()R,(T)e 1974, (76)

Fylw;n,) = 2

where D(1) =0 for 7> T
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Equation (76) is the direct equivalent of equation (63) for the cross-power spectral
density case. Since the correlation functions in equations (63) and (76) show some differ-
ences, equation (76) will be evaluated for the case of a rectangular lag window

D=1 0<7<T,

amn
=0 elsewhere.

Assuming that the excitation has a constant power spectral density Sp and that the
system is lightly damped such that i'a << 1, then, from appendix B,
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Comparing with equation (68), it is seen that equation (78) contains an extra term
§SinWq Ty COSWq Ty, in the numerator and denominator. If it can be assumed that the damp-
ing system is so small that

g’asinwa'rmcoswa'rm <<,
then equation (78) reduces to
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which is identical to equation (68). Thus, curves of the type shown in figures 8 and 9 can be
used to estimate the truncation errors in the single-sided Fourier transform method, although
it should be remembered that the condition on the damping is now, effectively, $o <<1
rather than ga <<1.

In a similar manner, the truncation errors in the single-sided Fourier transformation with
a triangular lag window will be approximately equal to those predicted by Soovere and
Clarkson (ref. 19) for the cross-power spectral density function (see fig. 8).

4.4.5 Summary

The single-sided Fourier transformation method operates on the response autocorrela-
tion function in such a manner that hidden phase angle information is exposed. For the
application considered in the preceding sections, the panel response is that due solely to the
aerodynamic pressure fluctuations; the introduction of a second excitation will be discussed
in section 5.0.



The ability to use phase information places the single-sided Fourier transform in a similar
category to the cross-power spectral density method, without the need to measure the excita-
tion and response simultaneously. Both methods can make allowances for background noise
and off-resonant vibration more easily than when only amplitude data are measured. In prac-
tice, errors arising in the single-sided Fourier transform due to noise, off-resonant vibration,
and truncation effects will be similar to those encountered in the cross-power spectral density
method. Correction procedures developed for the latter method can be used for the single-
sided Fourier transform although now the restrictions on small damping will be slightly more

severe.
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5.0 NON-STEADY-STATE METHODS

5.1 INTRODUCTION

The category of non-steady-state methods includes quasi-steady-state and transient
methods. Quasi-steady-state methods are usually associated with sinusoidal excitations,which
are slowly swept through the frequency range of interest. Narrowband random excitation
sweeps have been proposed for structural testing (refs. 21 and 22), but their application is
mainly that of determining response amplitude rather than the measurement of damping.
Recently, transient methods (refs. 23 and 24) have been proposed as replacements for the
slow sweep rates when there is a need for a significant reduction in testing time. An example
of such a test environment is the flutter testing of an airplane, where it is difficult to achieve
stable flight conditions in some parts of the flight envelope. Development of the transient
method has been carried out by White (refs. 14, 25, 26, and 27) and Kandianis (refs. 16 and
28), the latter having utilized random analysis methods to reduce the errors from noise
interference.

With regard to the current problem of damping measurement of panels exposed to a
moving airflow, the use of any non-steady-state method implies the introduction of a second
excitation at a given point of application. This has the advantage of allowing selection of a
suitable location for the excitation and alleviates to some extent the effect of the cross terms
of the type shown in equation (20) when e+ . The non-steady-state methods have a second
common characteristic because, with the exception of the narrowband random noise sweep,
which is not applicable to the present problem, the excitation in all the above methods is
deterministic in form.

5.2 QUASI-STEADY-STATE EXCITATION

The use of sinusoidal excitation in the experimental determination of the natural vibra-
tion characteristics of a system has been a standard technique for many years. The technique
involves a frequency sweep to determine the approximate locations of the natural frequencies,
followed by a detailed frequency analysis in the neighborhood of each resonance. During the
detailed analysis stage, the system is allowed to achieve steady-state vibration at each fre-
quency before recording the response and moving to the next excitation frequency. Unfor-
tunately, the method is very time consuming. The slow frequency sweep method was there-
fore introduced in an attempt to speed up the process.

In the slow frequency sweep approach the excitation frequency is slowly scanned through
the range of interest, and it is assumed that the vibration attains quasi-steady-state conditions.
Choice of the scanning rate depends on the natural frequencies and damping ratios of the
system under investigation, and the assumption of quasi-steady-state conditions may not be
valid in many cases. Several errors arise in practice. The response at resonance will be less
than the steady-state maximum, and the frequency at which the maximum occurs is shifted
in the direction in which the excitation frequency is changing. Additional errors are intro-
duced by the averaging time of the function analyzer used to derive the vector diagrams. Back-
ground noise errors, similar to those encountered in the steady-state sinusoidal method, will
also be present. Thus, the method has very limited application in practice.



5.3 TRANSIENT EXCITATION

5.3.1 Single Pulse

The frequency response function H(w), which is the basis for all the damping measure-
ments, is the Fourier transform of the impulse response function. Thus, if the system under
investigation is exposed to a unit impulse, the measured response will provide a direct mea-
surement of H(w) and hence of the damping. In practice the unit impulse is not attainable
because sufficient energy cannot be supplied to the system in an infinitesimal time period.
However, an acceptable approximation can be achieved by the use of a single pulse of short
duration. The use of such pulses has been discussed by White (ref. 25).

To illustrate the single-pulse method, consider a single-degree-of-freedom system, with
steady-state frequency response function H(w). If the excitation is p(t) and the response is
w(t), then

= Vw)
HE@) = i (80)
where P(w) and W(w) are the Fourier transforms of the transient excitation p(t) and response
w(t), respectively, i.e.,

P@) =5 [ p(neiet at;
W) = 3 [wneiotdr.

White (ref. 25) discusses several impulse shapes—rectangular, triangular, and trapezoidal—
but, for current demonstration purposes, only the rectangular pulse need be considered. Then

p(t) =A o<t T
=0 elsewhere,

where T is the duration of the pulse, and

_ sin (wT/2) jwT/2
Pw) = AT =0 2= elwT/2,

In certain cases, when the duration of the pulse is short with respect to the shortest
period present in the vibration of the system (ref. 25), only the response of the system need
be analyzed without creating large errors in the measured values of the natural frequencies and
damping ratios. However, it is difficult to determine the magnitude of the errors in advance,
and in practice usually both the excitation and the response have to be measured. A plot of
W(w)/P(w) will represent the frequency response function (equation (80)), and estimates
of the natural frequency and damping factor can be obtained using the Kennedy and Pancu
method (ref. 4).

Although simple in concept, the single-pulse method suffers from several disadvantages
which limit its usefulness in practice. If the pulse is short, to simulate an ideal impulse and
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excite a wide-frequency range, the energy of excitation and vibration at a particular frequency
will be low, and accurate measurements will be difficult. Secondly, it is difficult to control
the frequency content of the excitation, with the result that many modes which are outside
the range of interest may be excited while modes of interest may not be excited because of
zeros in the excitation spectrum (see the above example). Thirdly, difficulties may arise in
maintaining the pulse shape, thereby requiring measurement of the excitation signal as well

as the response. Finally, noise problems will severely interfere with the accuracy of the results.

5.3.2 Pulse Train

As a modification of the single-pulse method, Reed et al. (ref. 23) have investigated the
use of a series of rectangular and triangular pulses having a continuously decreasing time
period. Reed et al. claim that the rectangular pulse train has a practical advantage over the
triangular pulse train and the swept sine wave in that the rectangular pulses are simpler to
generate. However, the rectangular pulse train suffers from the disadvantage that the energy
is spread over a large frequency range. Also, pulse trains in general present many of the
problems associated with the single pulse. :

5.3.3 Rapid Frequency Sweep

To overcome the difficulties of frequency control, energy input, and pulse shape asso-
ciated with pulse excitation, an alternative form of transient excitation, the rapid frequency
sweep, has been introduced by Reed et al. (ref. 23) and Skingle (ref. 24), with further
developments by White (ref. 14, 25, 26, and 27) and Kandianis (refs. 16 and 28). The rapid
frequency sweep is achieved by scanning a sine wave signal from frequency w) to wy ina
very short time period T. In contrast to the slow sweep, quasi-steady-state conditions are not
assumed, the response being considered as transient in nature. Obviously there are an infinite
number of ways by which the frequency can change from wj to w5, but, for simplicity, a
linear variation is considered here. Thus, the frequency of excitation can be represented by
the equation

W =oat+ w) ot T

(81)
=0 elsewhere.
The excitation signal is then
. ft
p(t) = Pg Sin o (at + wy) dt
=posin/—gt2+wl t) 0t T
\ (82)
=0 elsewhere.

As is the case for the pulse methods, the excitation and response signals are deterministic,
and the steady-state frequency response function can be obtained by means of equation (80).



The Fourier transform P(w) of p(t) is a complicated function, and the characteristics of
the spectral amplitudes have been summarized by White (ref. 27). The spectrum amplitude is
not constant within the frequency range w; to w- but has two peaks, one at a frequency of
wpt1.2 Ja/2 and the other at a frequency ofwy - 1.2 Ja/2. The mean amplitude of the
spectrum is w/2a and the height of each peak is 1.4 times the mean amplitude. Between the
two peaks, the spectrum is oscillatory about the mean value, the amplitude of the oscillation
being proportional to 1/ JT For given values of w and w», a long duration time T can be
selected so that the spectrum amplitude is large enough to avoid problems of signal-to-noise
ratio and to reduce the spectral ripple to an acceptable value. The cutoff rate of the spectrum
at wy and wo is high.

Instrumentation to produce the rapid frequency sweep has been developed by White
(ref. 27), and the modulus of the Fourier spectrum for the excitation shows characteristics
similar to those described above. The phase spectrum is very irregular.

In practical applications, the transient method involves problems similar to those
encountered in the steady-state methods. This is not surprising, since the problems are all
related to Fourier transformation of the impulse and frequency response functions h (7) and
H (w) and to the presence of noise in the excitation and response signals.

The resolution of close natural frequencies is one example of a common problem. In
practice this has been interpreted as a requirement on frequency resolution in the power
spectral density analysis, and as a specification of the maximum time delay for the autocor-
relation function. For the latter case it was shown (equation (44)) that the displacement auto-
correlation function for two signals A sin [w 47+ 6] and Aﬁ sin [y +w')r +0] was

Ry(x,7) = (A3 + AJ+ 2A4A cos w2 sin (wyr+ 6 +6(1) (83)

for 7 > 0,and

AB sin w'r

tan ¢(r) =

AgtAgcos w'r '

White (ref. 26) has shown that for the corresponding impulse case, where the total impulse
function is

h(t) = h ) (t) thy(D)
and hl(t)=a1 sin wit
hy(t) = a5 sin (wq + wt,

then
h(t) =@ + a3 +2aay cos ')/ sin (Wt + ¢ (1), (84)
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where

a, sin w't

tan ¢1(t) = al i_az cosw't .

The similarity between equations (83) and (84) is immediately apparent. Positive and
negative signs in equation (84) are required to take into account the initial phase difference
(0 or m) between h(t) and h2(t), but this is not necessary in the random excitation case.

For equations (83) and (84) the maximum time delay has to be sufficiently long to
identify the frequency w’. This was demonstrated in figures 6 and 7 for the autocorrelation
function. Under ideal conditions the choice of maximum time delay 7., is solely a matter of
convenience, but in practice it may be dictated by the dynamic range of the analysis equip-
ment (ref. 26) or by computer storage problems. When severe truncation occurs, the errors
involved in the estimation of the damping from the measured locus of W(w)/P(w) are similar
to those in the cross-power spectral density (sec. 4.3.5) and single-sided Fourier transform
(sec. 4.4.4) methods. Correction curves derived from equation (68), examples of which are
contained in figure 8, can be used to improve the accuracy of the damping estimates from the
single-sided Fourier transform.

One important problem, which is difficult to solve by means of the deterministic
approach to the transient excitation method, is that of noise interference in the excitation
and response signals. Examples of the distortion in the frequency response function,
obtained by means of equation (80) when noise is present, are shown in reference 16. Since
the noise is usually random in nature, Kandianis (ref. 16) has applied random analysis
methods to the system which, with the exception of the noise, is deterministic in nature.
Kandianis discusses two possible approaches. The first one computes the power spectral
density of the response, including the effects of the noise signals. Instead of equation (80)
for the Fourier components, the power spectral density for the displacement is given by an
equation similar to that obtained by combining equations (22) and (23). Thus, the displace-
ment power spectral density function for mode a of the panel is

Sy = V) [Ho@) 12 {920 S0 + T AZS 1) Ip@) |+ S, (85)

where S 5(w) is the power spectral density for the transient excitation applied at x", S} (W)
is the power spectral density for the noise in the excitation (in the present context this is the
turbulent boundary layer pressure field),and S (w) is the noise in the response signal. It is
assumed that p(x", t), p2(>_( 1), and n(t) are statistically independent.

One word of caution is appropriate at this stage. The analysis of Kandianis assumes that
the excitation signal is stationary and, at a later stage in the single-sided Fourier transforma-
tion analysis, that the excitation is white noise. This assumption is valid only with certain
restrictions. Skingle (ref. 24) shows that, under certain assumptions, the autocorrelation
function for the rapid frequency sweep signal can be written in the approximate form

in (WAT
sin ( 2 )’ (86)

sz(T) = ((.o) 2T)



where w- is the upper cutoff frequency and the lower frequency w is assumed to be zero.
Equation (86) can be interpreted as implying that there is constant power spectral density in
the excitation. Referring to the notation of equation (81), the assumptions associated with
equation (86) are that

2¢¢1 and  aT2<<1,

aT
which in turn imply that T2 >> 12. Thus, the assumption that the transient signal represents
white noise is valid only if the maximum time delay in the autocorrelation function is small
with respect to the duration of the frequency sweep.

The second approach used by Kandianis (ref. 16) is the single-sided Fourier transform
of the autocorrelation function. The response autocorrelation function obtained from the
transient excitation in the presence of noise is similar to that encountered in the analysis of
the autocorrelation function associated with boundary-layer-induced vibration (sec. 4.2.5)
and suffers from the same experimental problems. Thus, Kandianis proposed the single-sided
Fourier transform method. The analysis of the method has been discussed in section 4.4 with
reference to the response to the turbulent boundary layer, and there is no need to repeat the
analysis in this section. The main difference between the two approaches is that in section 4.4
the turbulent boundary layer represented the excitation of interest and all other signals were
noise, whereas in the present case the rapid frequency sweep represents the signal of interest
and the turbulent boundary layer is classified as noise.

Combining the results of equations (74) and (75), the single-sided Fourier transform of
the displacement autocorrelation function will be:

(284 + i(w/wxle () He@) |,
Fu@ =2 i 4§aw§MZ (X Spa@q)

+ [ J v o )_"',wd)dy'dy"}

Va0 () Hy@) Speog tiw
+2&: % Mg |Dygl KCOS gty N 0"‘3) ¢
fawa +iw

L.[A \lla(X') wﬁ(z") Cpl(y', Y”’ wd) dY'dXIq. (Td— COSs 0,16 - sin Baﬁ)
L, 43 9557 Qo () dz'dz"}+ Sp@).

The function Fw(w) still contains cross terms (& # 3) associated with the boundary layer
spatially distributed excitation. However, the single-point transient excitation does not intro-
duce additional cross terms, with the consequence that the relative importance of the cross
terms in equation (87) is less than in equation (74), where only boundary layer excitation is
present.
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Truncation effects associated with the single-sided Fourier transform, and discussed in
section 4.4.4, will be applicable to the transient excitation case also.

5.4 SUMMARY

The non-steady-state methods discussed in section 5.0 cover a wide range of excitation
signals. However, the practical value of several of these signals is very limited because of inter-
ference effects from noise in the excitation or response. All the methods are associated with
deterministic excitation signals, and there are difficulties in coping with random noise inter-
ference unless random data analysis methods are adopted.

For the methods discussed, the rapid frequency sweep method provides the best fre-
quency control without having to assume quasi-steady-state conditions. In addition, the rapid
sweep method can be incorporated with random analysis techniques, provided that the maxi-
mum time delay in the correlation functions is small relative to the time period of the sweep.
Two steady-state random methods—power spectral density and single-sided Fourier transform
of the autocorrelation function—have been considered, and the practical problems are very
similar to those discussed in section 4.0 for steady-state excitation. Within the same constraints
on time delay, the excitation-response cross-power spectral density method provides a third
approach for transient excitation, and the problems encountered in practice would again be
similar to those for the corresponding steady-state excitation method.



6.0 COMPARATIVE EVALUATION OF METHODS OF DAMPING MEASUREMENT

In sections 4.0 and 5.0, several methods of measuring the damping of a system have been
analyzed on an individual basis. Each method is found to have a number of associated prob-
lems that, in practice, limit the useful range of test conditions. As a consequence, no method
is applicable to all test conditions. Thus, for a particular experiment, the applicability of each
method has to be evaluated and the most suitable method(s) selected. An evaluation of this
sort will be carried out in this section, with specific reference to the test conditions associated
with the vibration of panels exposed to a moving airstream.

First it is appropriate to restate the experimental conditions under which the selected
method of damping measurement will be applied. Damping measurements are to be made on
rectangular panels that will be mounted in the wall of a wind tunnel. One face of the panel
will be exposed to turbulent boundary layer pressure fluctuations in the wind tunnel, and the
other face will be enclosed in a chamber whose volume can be adjusted within a certain range.
The tunnel will be operated under stable flow conditions. Panel dimensions, at least in the
initial phases of the experimental program, will not exceed 30.48 c¢m (12 in.) in length or
breadth.

In this section, the damping measurement methods will be compared and evaluated on
the basis of the theoretical analyses in sections 4.0 and 5.0, with constraints imposed by the
above experimental conditions. Experimental support for the selected methods will be pre-
sented in section 7.0, although the test setup in that section will not attempt to reproduce
the conditions described above.

Several requirements that the selected methods must satisfy can be identified immedi-
ately. These requirements are:

a) The method must be able to exclude, or correct for, background noise in the
excitation and response signals. -

b) The method must be able to exclude, or correct for, off-resonant vibration in
neighboring modes.

c¢) The method must not require simultaneous measurement of the boundary layer
excitation and the associated panel vibration, although independent measurements
may be necessary. '

d) The required instrumentation must be compatible with the space restrictions
imposed by the test chamber.

Referring to the analyses in sections 4.0 and 5.0, requirement a) disqualifies the non-
steady-state methods, with the exception of the rapid frequency sweep method, which uses
the power spectral density function or the single-sided Fourier transformation of the auto-
correlation function. The response autocorrelation function for boundary layer excitation is
eliminated by requirements a) and b), and the excitation-response cross-power spectral density
method, using turbulent boundary layer excitation, is eliminated by requirement c). A v
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combination of requirements a) and d) causes the rejection of the cross-power spectral den-
sity method when a second excitation is introduced.

The methods still retained are the power spectral density and single-sided Fourier trans-
form methods associated with either boundary layer or transient excitation. Retention of the
power spectral density method may appear surprising at first, since many of the other methods
have been introduced in the past as improvements over the power spectral density approach.
Thus, some explanation of the decision is necessary.

The two main criticisms of the power spectral density method concern the difficulties
of separating resonant vibration from off-resonant vibration and background noise. Diffi-
culties that may have been encountered in the past because of too wide a filter bandwidth
can be adequately overcome with the narrow bandwidths now available through digital analy-
sis and the use of correction terms. The use of these same narrow filter bandwidths enables
the separation of close natural frequencies, but there still exists the problem of off-resonant
vibration and background noise at a natural frequency. Methods can be devised to correct
for the errors imposed by these interference signals, and one such method has been discussed
in section 4.0. Although rather crude in form, the correction procedure appears fairly satis-
factory, particularly if used in conjunction with the optimum positioning of the measuring
transducer. The more sophisticated methods, which have been proposed as improvements
over the power spectral density approach, are correspondingly more sensitive to experimen-
tal scatter.

The comparison has now reduced to one of steady-state random excitation versus rapid
frequency sweep. Historically, transient excitation methods were introduced for use in experi-
mental conditions that are stable for only short periods of time. Since the present test con-
ditions are stable over relatively long periods, the basic property of the transient excitation
cannot be classified as an advantage. Further, the method involves the introduction of a sec-
ond excitation, with accompanying instrumentation problems, and a severe signal-to-noise
ratio problem because the boundary layer induced vibration is now regarded as noise. The
transient excitation has to be transmitted to the test panel and, unless a suitable choice of
panel material has been made, some mass loading of the panel may be necessary.

However, the transient method possesses advantages associated with single-point exci-
tation. Mode isolation can be controlled to a certain extent by choice of excitation location,
although the benefits of the technique are limited by the presence of the boundary layer
induced vibration. Also, single-point excitation does not introduce cross-term contributions
in the response spectra, so the adverse effects of the cross terms (@ # f3), induced by the
spatially distributed boundary layer excitation, are reduced. In addition, the rapid frequency
sweep method uses deterministic excitation, thereby tending to reduce the experimental

* scatter in the measurements. The sinusoidal nature of the excitation allows concentration of

the excitation energy at selected frequencies and improves the signal-to-noise ratio.

Basically, the steady-state and rapid frequency sweep methods appear to offer similar
degrees of accuracy in the damping measurements. Thus, the instrumentation requirements
will play a major role in determining the most suitable method. Using this as the criter-
ion, the power spectral density and single-sided Fourier transform methods associated with
turbulent boundary layer excitation were selected for subsequent experimental demonstra-



tion. The instrumentation requirements are no different from those normally associated with
the measurement of structural response to turbulent boundary layer excitation, and the panel
displacement power spectrum due to boundary layer excitation is an immediate by product
of the damping measurements. The theoretical analysis does not indicate the superiority of
either the power spectral density method or the autocorrelation single-sided Fourier trans-
form method, with the consequence that both methods are selected for experimental testing.
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7.0 DATA REDUCTION REQUIREMENTS

7.1 INTRODUCTION

Many of the methods of damping measurement discussed in sections 4.0 and 5.0,
including both of the methods selected in section 6.0, require random process techniques
for data analysis. It is possible that analog or digital techniques could be used, but, for damp-
ing measurements, digital methods are recommended because of the greater flexibility in
choice of filter bandwidth and other characteristics and because the digital methods are
usually more economical. For some of the Fourier transformation calculations, digital tech-
niques of data reduction are almost essential.

The use of digital data reduction methods introduces a number of requirements on data
sample length, digitization rate, filter bandwidth, etc., and some comments on the require-
ments are necessary to show their influence on the measured damping. For this reason, the
present section will provide a general discussion on the requirements. Comprehensive dis-
cussions of digital data reduction techniques, as applied to random time series, can be found
in references 20, 29, 30, and 31.

The data reduction scheme followed in the demonstration experiment, which can be
considered as a typical procedure, is shown in the flow chart in figure 10. The data reduction
is carried out in four stages that are strongly interdependent, the output of one stage being
the input of the next. Thus, even the last step in the data reduction cycle can impose restric-
tions on the data acquisition. As an example, the required statistical reliability of the estimated
response power spectral density will determine the initial length of the data recording. Although
some of the data reduction requirements may be peculiar to the current data analysis tech-
nique, most requirements will be common to all similar damping measurement experiments.

7.2 DISCRETE FOURIER TRANSFORMS

A function p(t), continuous in time t, can be represented by a series of discrete samples
p(n,t) in time. Generally, the discrete points p, are sampled at equal time intervals A7, and
the sampling rate s is defined as s = 1/A7. If N discrete points p,, = p(n,A7) are given for
n = 1,2,...N, then the time series is known in a finite time interval AT where AT = N - A7, and
AT can be referred to as a “subinterval.” An infinite discrete time series can be obtained by
letting N+, The complex Fourier amplitude of a continuous function p(t) is given by
equation (10) as

Pe) =5 :p(t)e'iwtdt
or

p(p) = J_P(0e 2t (88)



The equivalent of equation (88) in a finite discrete time series is
LS
P =Pk,AfR) =3 2o pp e i27ko/N (89)
n=-N/2

where N is an even integer and the fundamental frequency interval -

11
AR = AT =N~ a7

For k = 0, P, gives the mean of P, It can be shown that -N/2 < k <€ N/2, i.e., the
number of dlstmct Fourier amplitudes Pk is equal to the number N of discrete samples in
time o Thus, AT determines the frequency resolution and s = 1/A7 determines the maximum
frequency f max =N- Af /2 The Fourier amplitude Py will have a frequency window of
the form (sin AfF)/AfF

(90)

If the direct method of calculating power spectral density is used, as indicated by
equation (12), then the power spectral density of p,, is given by

Sy = Sy (k, Af) = P Py * 1)

where the asterisk denotes the complex conjugate. The Fourier amplitude and the complex
conjugate will each have a frequency window of the form (sin AfF)/ Afg. Thus, the spectral

window of the estimate of the power spectral density S, will be of the form [(sin AfF)/A fpl<,

and has an associated triangular, or Bartlett, lag window.

When the power spectral density Sy (k,AfE) is obtained by means of the direct method
of equation (91), the autocorrelation function R, = R,,(n,A7) is computed by transforming
Sy (k,Afp). The autocorrelation function will be given in the time interval -N/2 - AT <
t < N - A7/2,at discrete time lags A7, and the transformation process will incorporate the
above triangular lag window.

The single-sided Fourier transform of the discrete autocorrelation coefficients can be
represented by equation (89). Therefore, the calculated single-sided Fourier transform will
have a spectral window of the form (sin Afg)/Afp and the description that follows equation
(89) will also be applicable. Computer programs that use the fast Fourier transform algorithm
to calculate power spectral density, autocorrelation, and single-sided Fourier transform func-
tions will introduce the above characteristics into the computed functions.

7.3 DATA REDUCTION REQUIREMENTS

There are several data reduction requirements. Some are peculiar to digital analysis,
while others are common to all random data analysis techniques—digital or analog. These
requirements are discussed below.
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7.3.1 Filter Bandwidth

Errors introduced by finite bandwidths of the analyzing filters are discussed in section 4.0,
where it is shown that, for rectangular filters, a bandwidth that is half of the measured
resonance bandwidth, will introduce an error of about 14% in the estimated damping factor.
Theoretically, corrections can be applied to measured damping factors obtained by means of
any filter bandwidth, but in practice the correction procedure has acceptable accuracy only
if the errors are relatively small. Thus, for power spectral density measurements, a filter band-
width requirement can be specified as Afg < Afp/2. Obviously, some prior knowledge of
the damping in the system is required, or an iteration method has to be applied in the
selection of Afp.

For a given set of digitized data, the effective filter bandwidth will be a function of the
time length of the data sample and the digital analysis process used in the computation. The
frequency-dependent function will be obtained from a time series that can be either the
original data or a correlation function. Fourier transformation from time to frequency domains
will be performed with some time or lag window because of the finite limits on the time series.
This lag window will, in turn, determine the characteristics of the spectral window or filter
in the frequency domain, as indicated in reference 20. For example, a rectangular lag window
of width AT has a spectral window of equivalent width equal to 1/AT. Lag windows, such as
triangular, Hanning, Hamming, and Parzen windows, have the effect of improving the statistical
reliability of the data but increase the effective bandwidth of the filters for a given value of
AT. The advantage of these nonrectangular lag windows lies in the reduced amplitude of the
filter side lobes.

7.3.2 Total Sample Length

The length of the data samples used in the random analyses will influence the statistical
reliability of the reduced data; the shorter the sample length the lower will be the reliability.
However, long samples require long processing time, and a compromise has to be reached
between long sample length and practical limitations on cost and computer core storage
requirements.

The reliability of the power spectral density estimate is characterized by the normalized
standard error € where

= —l— '
€ JBig T ©2)
If the total sample length T consists of V subintervals, each of length AT, then T=V- AT
and, using equation (90),

€= —L
JV
Thus, in practice, statistical scatter can be reduced by increasing the number of subintervals,
or subspectra, used to obtain an ensemble average. The effect is illustrated in figure 11, where

the four power spectra are calculated using four different values of V,i.e., V=9,25, 50 and
100 (€= 0.33,0.2, 0.14, and 0.1). For V=9 (fig. 11a), resonance peaks in the vicinity of



1000 Hz are completely obscured by the statistical scatter. As V increases, the statistical
scatter is reduced and the peaks are better defined. The statistical scatter in the power
spectral density will introduce equivalent scatter in the autocorrelation and the single-sided
Fourier transform functions. Thus, when filter bandwidth requirements are specified, based
on considerations stated in earlier sections, the total sample length requirements can be
estimated so that a desired degree of statistical reliability can be achieved.

When the vibration spectrum is obtained by an ensemble average of a series of sub-
spectra, the vibration autocorrelation function is calculated from the average spectrum by
means of the inverse Fourier transformation. This method reduces the statistical scatter
in the autocorrelation function, with a minimum of computer operating time.

7.3.3 Digitization Rate

Analog-to-digital conversion of a signal requires the selection of a digitization or
sampling rate s that is determined by the upper frequency of interest in the spectral analysis.
Too low a sampling rate will introduce aliasing errors in the spectrum, but too high a sampling
rate will lead to problems in data handling and economics. Thus, a compromise is again
required. For Fourier analysis of a time series using the fast Fourier transform algorithm, the
relation between the upper frequency of interest fmax and the lowest acceptable sampling
rate is given as s = 2f ., but, in practice, a higher sampling rate is necessary. Aliasing errors
will depend on the spectral content of the signal to be analyzed, but, in general, for stationary

time series analysis, a sampling rate of s = 2.5f .. is adequate.

7.3.4 Number of Data Points

The filter bandwidth and sampling rate together determine the number of data points to
be used in the calculations. Thus, the number of data points N is given as N = AT/A7 = s/A ff
when Afp = 1/AT. The fast Fourier transform algorithm requires that the number, L, of
data points used in the transform be an integer power of 2, i.e., L = 2J where j is a positive
integer. If N< L, then (N - L) zeros are added to the data points and the calculation carried
through with L points. The addition of zeros to the time series will not change the filter band-
width since this is still a function of the original sample length AT. However, the presence of
the zeros will change the frequency interval Af’ at which the Fourier transform is calculated
since Af'=1/AT' where AT'is the sample length after the addition of the zeros. Obviously,
selection of the number of zeros is again a compromise, with computer storage and cost pro-
viding a constraint.

The addition of zeros to reduce the frequency interval has been used in the single-sided
Fourier transform method (ref. 26) for the analysis of ship vibration.
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8.0 DEMONSTRATION EXPERIMENTS

8.1 TEST OBJECTIVES

Two methods—the response power spectral density method and the response autocorre-
lation single-sided Fourier transform method—have been selected in section 6.0 as being the
most suitable for the measurement of damping in panels exposed to a moving airflow. These
two methods have been used to calculate damping factors of a rectangular panel from data
obtained in laboratory demonstration experiments. The primary objective of the experiments
is the demonstration of the validity of the two selected methods under laboratory conditions,
with a secondary objective being the illustration of the various errors and limitations discussed
in the analytical investigation, Both objectives are essentially met by the demonstration experi-
ments described in the following sections.

8.2 DESCRIPTION OF DEMONSTRATION EXPERIMENTS

8.2.1 Introduction and Planning

Typical work elements of the demonstration experiments are shown in the flow diagram
in figure 12. The experiments can be divided into three parts:

a) Fundamental vibration characteristics of the test panel. (Analytical and experimen-
tal determination of natural frequencies and mode shapes.)

b) Measurement of panel damping using discrete frequency excitation. (These values
of the damping are used as standards in the evaluation of the random excitation
methods.)

¢) Measurement of panel damping using random excitation.

The test specimen chosen for the experiments was a 30.48- by 17.78- by 0.127-cm (12-
by 7- by 0.05-in.) rectangular aluminum panel with clamped boundaries. The 20 lowest
natural frequencies of the panel were calculated using Warburton’s method (ref. 32), and
these are listed in table 1. It can be seen that the test panel possesses some modes whose
natural frequencies are fairly well isolated, e.g., modes (1,1), (2,1), and (3,1), and other
modes with close natural frequencies, e.g., modes (4,2), (5,1), and (1,3) and modes (5,2),
(3,3), and (6,1). Thus, the two methods of damping measurement can be evaluated for
single modes and for closely spaced groups of modes.

As is anticipated from section 3.1, the damping of the test specimen is very low. Since
this low damping is not necessarily typical of all environments likely to be encountered in the
wind tunnel, it was considered that the damping measurement methods should be evaluated
also under conditions of relatively high damping. To this end, the demonstration was carried
out first on the bare-panel and then repeated with a single layer of damping tape (table II)
applied to one surface of the panel. The damping tape increased the panel damping by an



order of magnitude and permitted evaluation of the measurement techniques over a wide
range of values for the damping factor. In the present discussion, therefore, the high and
low damping cases will refer to the test panel with and without damping tape, respectively.
The application of the damping has only a small effect on the panel natural frequencies.
Based on the change in total surface density, the calculated natural frequencies will change
by a factor of 0.943.

To make a consistent evaluation of the selected methods, it is essential that there be
no change in damping of the test panel when the excitation changes from discrete frequency
to random. This can be achieved with certainty only if the same means of excitation is used
for both test conditions, and it is for this reason that turbulent airflow was not used as the
source of the random excitation. There was no guarantee that the acoustic radiation damping
would not change in the presence of the airflow.

Two possible excitation methods, single point or distributed loading, were available for
the experiment. Single-point excitation has the advantage that selected modes can be excited
or suppressed. However, since the panel material was aluminum, noncontacting magnetic
excitation could not be used and single-point excitation would have involved mass loading
of the panel. Acoustic excitation does not have the modal selectivity of single-point loading
but is more typical of the loading distribution imposed by a moving airstream. Furthermore,
the two selected measurement methods do not specifically require point excitation. Thus
acoustic plane wave excitation was chosen for the demonstration experiments.

Knowledge of the panel mode shapes is highly desirable, even essential, if reasonable
accuracy is to be achieved in the damping estimates. Identification of the nodal and antinodal
lines allows selection of the measuring transducer locations so that vibration in a particular
mode can be given preference. Qualitative information, such as that obtained from Chladni
or nodal patterns, is sufficient for the selection of the measurement positions.

8.2.2 Experimental Setup and Instrumentation

A block diagram of the experimental setup and instrumentation is shown in figure 13.
The aluminum test panel was mounted on a heavy pedestal such that it could be excited by
acoustic waves with angles of incidence varying from grazing to normal by changing the
orientation of the acoustic horn and panel. The test panel could be mounted in the vertical
or horizontal plane, the horizontal plane being used only when obtaining the Chladni figures.
The excitation was either single-frequency (pure-tone) or band-limited white-noise acoustic
waves, and the intensity of the excitation was controlled by means of the voltage across the
acoustic horn.

The panel response was measured in terms of displacement, using a noncontacting Photocon
proximity transducer, Model PT5, which was mounted on a traverse bar. It was possible to
locate the probe at any position over the plate, with the gap between the probe and the test
panel adjusted to any desired value. The gap between the probe and the test panel at rest was
chosen as 0.076 cm (0.03 in.) to provide the required sensitivity for the displacement meas-
urements. The Photocon proximity probe was calibrated, and the ac voltage output of the
probe provided a measure of the displacement of the panel.
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The excitation signal could be measured either in terms of the voltage input to the driver
unit of the acoustic horn or in terms of the acoustic output of the horn. To measure the sound
field, a 1/4-inch-diameter Bruel and Kjaer microphone was located near the horn exit. When a
band-limited white-noise signal was applied to the driver unit, the acoustic pressure field in
the neighborhood of the test panel had a power spectral density that was flat to within +5 dB
in the frequency range of 200 to 2000 Hz and #2 dB in any octave band in this frequency
range. The horn response did not contain sharp spikes but varied slowly with frequency. In
the vicinity of any panel natural frequency, the horn response could be considered to be flat.

During the discrete frequency tests, the phase angle between the voltage input to the
horn and the voltage output of the proximity or displacement probe was measured in addition
to the amplitudes of the two signals. The data were analyzed on line. For the random excita-
tion methods, the voltage input to the driver, the acoustic output of the horn, and the panel
response were recorded on magnetic tape to provide an analog source tape. The analog signals
were subsequently passed through an analog-to-digital converter to produce a digital data tape.
A CDC 6600 digital computer was used to process the digitized data.

The experiments were conducted in an acoustical test room where the acoustic environ-
ment could be controlled.

8.3 EXPERIMENTAL PROCEDURE

8.3.1 Preliminary Experiments

The preliminary experiments included experimental determination of the natural fre-
quencies, qualitative estimates of mode shapes by means of Chladni figures, determination
of suitable angles of incidence of the acoustic waves for exciting desired modes, and coarse
estimates of the half-power bandwidths of a few modes. Using acoustic waves of grazing inci-
dence, it was possible to excite all mode orders in the direction of propagation of the acoustic
waves. Therefore, waves of grazing incidence propagating along the length of the panel were
used in most of the investigation. Only when obtaining the Chladni figures for modes with
even order along the width of the panel was the excitation changed such that waves of grazing
incidence would propagate along the width.

To obtain the nodal line patterns (Chladni figures) for the test structure, the panel was
mounted horizontally and white, dry sand or fine aluminum filings were spread thinly on the
panel surface. The panel was excited at each natural frequency in turn, and the nodal pattern
was photographed when the excitation was turned off.

Figure 14 shows Chladni figures for the bare panel. Chladni figures for the panel with
damping tape are almost the same as the corresponding figures for the panel without tape.
Thus, the patterns shown in figure 14 can be considered as representative of the low and high
damping conditions. The irregular nodal patterns that occur at some natural frequencies are
most likely due to inhomogeneities in the thickness and flatness of the panel and to initial
stresses. However, for the present demonstration, these details are irrelevant.



One peculiarity observed during the preliminary experimental stage is worthy of com-
ment. In the process of obtaining a quick estimate of the half-power bandwidth of the (2,1)
mode for the low damping case, the response amplitude varied significantly even when the
amplitude and frequency of the excitation were held constant. A systematic investigation of
the phenomenon ruled out the possibility of drift in the measuring instruments, and it was
deduced that the variation in the amplitude was inherent to the panel response and was due
to drift in natural frequency. The frequency drift (measured via variation of response ampli-
tude as indicated above) showed a strong dependence on the peak response amplitude. When
the panel displacement was slowly increased, the first noticeable occurrence of the drift was
observed at a peak amplitude of about 0.0102 mm (0.0004 in.). The drift increased signifi-
cantly when the peak displacement exceeded 0.025 mm (0.001 in), but no drift was observed
below 0.0076 mm (0.0003 in.) peak displacement. Therefore, the excitation was adjusted to
give a peak displacement of less than 0.0076 mm (0.0003 in.). A similar, but less pronounced,
frequency drift was observed for mode (1,1). No frequency drift was observed for the high
damping case.

8.3.2 Discrete Frequency Excitation

For this phase of the experiment, similar procedures were used for the high and low
damping cases. The panel was excited by a pure tone at the natural frequency of a mode
under investigation. The measuring displacement probe was located at an antinode of the
mode, the location being selected by means of the previously obtained Chladni figures. The
excitation was then adjusted such that the peak deflection at resonance was less than 0.0076 mm
(0.0003 in.). For the higher order modes and for the high damping case, the maximum allow-
able input voltage to the driver was often the limiting factor; under these conditions, the peak
deflection was substantially less than 0.0076 mm (0.0003 in.). The response amplitude and
the phase with respect to the excitation were measured at a series of frequencies in the vicinity
of the resonance. For a few selected modes, the excitation frequency was varied in both
ascending and descending directions to ensure repeatability.

In the case of a mode with a natural frequency close to other natural frequencies, the
contributions from other modes were minimized by locating the measuring probe on or near
nodes of the undesired modes. In such a case, the probe may be located off the antinode of
the mode under investigation. For example, when investigating mode (6,1), the measuring
probe was located at X] = 8.89 cm (3.5 in.), X3 = 11.43 cm (4.5 in.) so that the contribution
of the (3,3) mode was eliminated, the probe being located on a node line of the (3,3) mode
(see fig. 14), and the contribution of the (5,2) mode was minimized. Similarly, when investi-
gating the (5,2) mode, the contribution of the (3,3) mode was eliminated by locating the
probe at x; = 12.07 cm:(4.75 in.), X3 = 13.34 ¢cm (5.25 in.). Measurement locations used
during the discrete frequency test are given in table III.

The effects of background noise and off-resonant contributions have been discussed in
section 4.0. To obtain estimates of the magnitude of these contributions in the displacement
spectra, the response spectra were investigated on either side of each natural frequency, and
the spectral minima adjacent to each natural frequency were identified. The spectral densities
and frequencies associated with these minima were recorded.
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8.3.3 Random Excitation

A procedure similar to that described above for discrete frequency excitation was used
for the random excitation, except for the following two differences: (1) band-limited white
noise was substituted for the pure tone and (2) the excitation, the response, and the input
voltage to the driver of the acoustic horn were recorded on a magnetic tape to produce an
analog source tape. Measurement locations and excitation bandwidths are given in table IV.

Reduction of the random data for the demonstration experiment was carried out in
four steps: data acquisition and recording to produce the analog tape, analog-to-digital con-
version, use of a computer program to calculate the displacement power spectral density and
autocorrelation functions, and, finally, calculation of the single-sided Fourier transform of
the autocorrelation function. The procedure is the same as that outlined in figure 10.

The voltage signals representing the panel displacement, acoustic excitation, and current
supplied to the driver unit of the acoustic horn were recorded on magnetic tape at a tape
speed of 152 cm/sec (60 in./sec), to produce the analog source tape. The analog tape was
then replayed into digitizing equipment to produce a digital tape. Since the maximum fre-
quency of interest was specified as 2000 Hz, a digitization rate of 8000 samples per second
was used. This satisfied the conditions >4f,, ., required by the single-sided Fourier trans-
form computations (see below), for all run conditions. Digitizing rates less than 8000 samples
per second could be used if f,,, < 2000 Hz, and these lower sampling rates were obtained
from the original digitized data by means of a decimation process. However, the condition
s < 4f,. Was always satisfied. A total of 60 sec of data was recorded for each test run and,

from this, a total of 54 sec was digitized.

For the high damping case, all data runs were averaged over 50 subspectra. Thus, the
normalized standard error e of the power spectral density estimates was about 0.15 for the
high damping case. When the low damping data reduction was carried out, the maximum
available sample time length of 54 sec became a critical factor, and in only three runs (7A,
7B,and 8B) could the spectra be computed by averaging 50 subspectra. A smaller number of
subspectra was used in all other low damping runs.

Filter bandwidth requirements are extremely critical at low frequencies in the low
damping case. For example, in modes (2,1) and (3,1), filter bandwidths of 0.35 and 0.9 Hz
are desirable. However, the limited data sample length of 54 sec was not sufficient to provide
acceptable statistical scatter (€ < 0.15) for such narrow filter bandwidths, so a larger band-
width of about 1.0 Hz was used. Filter bandwidth did not pose a problem for the high damp-
ing results, the condition AfF < AfM/ 2 being satisfied in all cases.

The computer program used to calculate the single-sided Fourier transform imposed
additional constraints on the data. The program was checked with respect to known analyti-
cal functions and it was found that, for a transformation error of less than 1%, Afg should be
less than Afys/4 and digitizing rate s should be greater than 4f max- For an error of less than
15%, Afp < Afy/2 and s > 4f ax- [n the computation of the single-sided Fourier trans-
form, zero terms were added to the autocorrelation function so that an adequate number of
data points was available for the plotting of the response function. Addition of zero terms
increased the maximum time delay by a factor of four for the low damping case, and by a
factor of at least seven for the high damping case.



8.4 DISCUSSION OF RESULTS: DISCRETE FREQUENCY EXCITATION

Three possible ways of calculating damping factors using the discrete frequency excita-
tion are presented in figures 15a, b, and c. For a single mode, such as the (2,1) mode, which
has a natural frequency well separated from the adjacent natural frequencies, all three meth-
ods would yield damping estimates of similar accuracy. Because of the low damping in the
case of the bare test panel, most of the modes can be considered to satisfy, approximately,
the conditions for a single mode. Thus, for the low damping case, the response amplitude
method and the Kennedy-Pancu vector diagram (amplitude phase plot) give damping factors
that are within an acceptable experimental scatter, e.g., the damping factors calculated using
the two methods are within #2.5% of each other for all modes except three. Two of the three
exceptions have experimental scatter of £5%, whereas, for the remaining mode (5,2), the
Kennedy-Pancu method gives a damping factor that is 67% of the one calculated from the
response amplitude method. The higher estimate from the response amplitude method is
attributed to the off-resonant contribution from the (6,1) mode.

When damping tape is applied to the test panel, only a few lower order modes, e.g. (2,1),
(3,1), and (4.1), satisfy the conditions for a single mode. Due to contributions from the off-
resonant modes, damping factors calculated from the response amplitude method are gener-
ally higher (by an average of 15%) than those calculated by the Kennedy-Pancu method. No
background noise corrections are applied to the discrete frequency response amplitude data
because of problems in determining the correct phase-angle relationships.

The effect of background noise and contributions from the off-resonant modes can be
readily seen from the Kennedy-Pancu diagram. For a single-degree-of-freedom system, when
the off-resonant contribution is zero, the center of the resonance circle will be located at half
the peak amplitude, i.e., at 0.5 when the normalized amplitude is used. Thus, a deviation from
0.5 is a measure of the off-resonant contributions. As an example, figures 16 and 17 show the
Kennedy-Pancu diagrams from the low and high damping cases, respectively, of mode (2,3).
The centers of the resonance circles for the low and high damping cases are located at 0.44
and 0.26, respectively.

As a'contrast, consider mode (2,1), which is well separated from other modes. The
Kennedy-Pancu diagram for the (2,1) mode, even for the high damping case (fig. 18), shows
that the center of the resonance circle is at 0.46.

When the natural frequencies of the two modes are so close that the two resonance
circles cannot be clearly defined in the frequency range of the half-power bandwidth of the
response peak, the damping factors can be calculated from the phase-angle plot (fig. 15b).
The damping factors for the (5,1), (4,2), and (1,3) modes for the high damping case were
obtained using this technique. All other damping factors shown in table III were obtained
using Kennedy-Pancu diagrams. The damping factors shown in table III are used as the datum
damping factors for the test panel with and without damping tape.
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8.5 DISCUSSION OF RESULTS: RANDOM EXCITATION

The stochastic equivalents of the three schemes of calculating damping factors are shown
in figures 15d, e, and f. Once again, in principle, all three methods can yield estimates of sim-
ilar accuracy for a single mode that is free from background noise and contributions from off-
resonant modes. The practical application of these methods to a multimodal system is
described here. The primary objective is to assess the response power spectral density and
single-sided Fourier transform of the response autocorrelation methods. Therefore, no
attempt is made to calculate the damping factors of each and every mode. Since the panel
was excited by acoustic waves propagating along the length of the panel, most of the modes
with mode order higher than one in the width will not be excited very efficiently. Those
modes are usually excluded from the discussion, but this exclusion does not cause any loss
of generality in the conclusions.

8.5.1 Response Power Spectral Density Method

The high damping case, which will be affected by the background noise and contribu-
tions from off-resonant modes more than the low damping case, is considered first. The
response spectra calculated from runs 2B, 4B, and 9B (see table IV) are shown in figures 19,
20, and 21, respectively. Spectra drawn in figures 19 and 20 indicate that the peak response
in the (2,1) and (4,1) modes is higher than the nearest valley in the spectrum by a factor of
more than 10. Thus, these two modes are considered to represent a single-mode case. For
both the modes, AfM/AfF > 5; therefore, errors due to filter bandwidth are less than 2%.
The calculated damping factors for the (2,1) and (4,1) modes are 1.08 and 1.12 times the
datum damping factors (see table V).

Now consider mode (3,1) shown in figure 20. Due to the measurement location for run
4B (see table IV and Chladni figures in fig. 14a) the (3,1) mode is suppressed and the response
peak shows some contribution from the background noise. The damping factor for mode
(3,1), before applying background noise correction, is 1.28 times the datum damping factor.
When the background noise correction is applied (fig. 4), the corrected damping factor in
table V for the (3,1) mode is 1.11 times the datum value.

A relatively large excitation bandwidth, 200-2000 Hz, was used for run 9B. Thus, the
response spectrum shown in figure 21 will be similar to that obtained by exciting a panel by
broadband turbulent boundary layer pressure fluctuations. The measurement location was
such that the probe would measure all modes with mode order less than six in the length
direction and less than four in width direction. As expected, the spectrum shows a series of
peaks with different relative levels, and the (3,2) mode can be taken as an example of very
high contributions from background noise. For this mode, the damping factors calculated
with and without background noise correction are, respectively, 1.06 and 1.33 times the datum
damping factor.

Measured damping factors, estimated by means of the power spectral density method,
are shown in table V for several modes in the high damping case. Where necessary, the meas-
urements have been corrected for background noise using figure 4. The data are separated
into two categories that are determined by the magnitude of the background-noise. For



table Va, the displacement power spectral density ratio of resonant peak to adjacent valley

is greater than 10 dB, whereas, in table Vb, the ratio is less than 10 dB. In all cases, the filter
bandwidth is less than a quarter of the measured resonance bandwidth so that the resolution
error, predicted by figure 5, is less than 3%. For the high damping case, when the background
noise is low, table Va shows that the error in the measured damping factor varies from -11%
to +25% of the corresponding datum value, with a root mean square (rms) error of 12%.
When the background noise is high (table Vb), the error increases and, for the data shown,
lies in the range of +6% to +89% with an rms error of 44%.

The problems encountered in the measurement of low damping factors are rather dif-
ferent from the high damping case. The off resonant/background noise contributions do not
now pose problems. However, due to the narrowness of the resonance peaks, the filter band-
width becomes a critical factor for the lower order modes. Also, as discussed in section 7.0,
long sample lengths are required for good statistical reliability with narrow filter bandwidths.
The response spectra calculated from low damping runs 4B, 9B, and 8B are shown in figures
22, 23, and 24, respectively, the total sample length being the same for all three cases. Filter
bandwidth Afg, is 0.5 Hz in figures 22 and 23 and 1.0 Hz in figure 24. The two cases with
the smaller filter bandwidth show higher statistical scatter, which makes it difficult to calcu-
late accurately the half-power bandwidths of the peaks.

A comparison of the spectra in figures 23 and 24 indicates another important problem
area. The excitation bandwidths for runs 8B and 9B are 800-1600 and 200-2000 Hz, respec-
tively. Due to the wider excitation bandwidth for run 9B, the lower order modes, which can
be excited relatively efficiently, dominate the spectrum in figure 23. In run 8B, the excita-
tion has an 18-dB per octave rolloff below 800 Hz, thus, the lower order modes are de-empha-
sized in figure 24, and the peak response amplitudes are of similar magnitude for many of the
modes shown. When the panel is excited by the broadband noise due to turbulent airflow,
an effect similar to that in figure 24 can be obtained by filtering the response signal from the
displacement probe before recording the data.

Measured damping factors for the low damping case are shown in table Vc for the power
spectral density method. In all cases except one, the power spectral density peak-to-valley
ratio is greater than 10 dB, and the damping factor lies within a range of -18% to +32% of the
datum values. The rms error is 15%. Except where indicated, the damping factors in table Vc
were obtained using filter bandwidths less than half of the measured peak bandwidth.

8.5.2 Single-Sided Fourier Transform Method

The single-sided Fourier transform Fy W) of the displacement autocorrelation function
was computed using the fast Fourier transform algorithm on a digital computer. Data reduc-
tion requirements associated with the computer program have been discussed in section 8.3.3.
These requirements were satisfied for all modes investigated at the higher damping condition
but not for all modes with the lower damping.

Consider first the high damping case because these results show the accuracy of the
method when used under satisfactory conditions. As an example, the function Fw (w) for the
(2,1) and (2,3) modes is shown in figures 25 and 26, respectively. In both cases, the locus of
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Fy (w) is approximately circular with some distortion because of truncation errors introduced
by the finite maximum time delay. The curves can be compared with the corresponding fig-
ures for discrete frequency excitation shown in figures 18 and 17, respectively. Vector curves
for modes (5,1), (4,2), and (1,3), which have close natural frequencies, are shown in figure

27. The figure clearly shows the effect of contributions from off-resonant vibration.

In common with the function H (w), the natural frequency of a mode is located where
the rate of change of arc length with frequency is a maximum for the function FW (w). In
many cases, such as figures 25 and 26, the natural frequency can be located by visual inspec-
tion of the vector diagram. The resonance diameter is drawn and the damping factor calcu-
lated as illustrated in figure 15f. When there are close natural frequencies, it may be difficult
to locate each resonance by visual inspection of the vector diagram, and a curve of arc length
as a function of frequency is plotted as shown in the example of figure 28. If the resonance
circle is not clearly defined over the half-power bandwidth, the damping can be calculated
from the phase-angle plot in the neighborhood of the natural frequency.

Measured damping factors for several modes, estimated using the single-sided Fourier
transform of the displacement autocorrelation function, are shown in table VI. Data for the
high damping case have been separated into low and high background noise categories, as in
table V for the power spectral density method. For modes with small background noise and
off-resonant contributions, the estimated damping factors in table Vla are within -18% to
+23% of the datum values, with an rms deviation of 13%. For high-noise conditions, defined
as a power spectral density peak-to-valley ratio less than 10 dB, the estimated damping factors
show deviations within the range -11% to 77% of the datum values with an rms error of 47%.

One of the requirements of the computer program for calculating the single-sided
Fourier transform is that the frequency resolution of the transform would be less than a
quarter of the half-power bandwidth of the resonance peak (sec. 8.3.3). Within the limits of
the data reduction system used in the demonstration experiments, the above requirement
could not be satisfied for all lightly damped modes, such as modes (2,1) and (3,1) in table Vlc.
The damping factors in table Vic, which refer to the lightly damped conditions, have been
corrected for truncation errors based on figure 9 but still show a wider experimental scatter
than for the higher damping. For the data in table VIc, the estimated damping factors differ
from the datum values by amounts ranging from -4% to +70%, with an rms deviation of 43%.

8.5.3 Comparison of Random Analysis Methods

Damping factors for several normal modes of a rectangular panel have been estimated,
from measurements made under random excitation conditions, using displacement power
spectral density and single-sided Fourier transform methods. A comparison of the results
identifies two important parameters, one of which is the presence of background noise and
the other is the frequency resolution requirement of the single-sided Fourier transform method.

Under the best test conditions, with low background noise such that the displacement
power spectral density peak-to-valley ratio exceeded 10 dB, and with good frequency reso-
lution defined as being a filter bandwidth less than a quarter of the resonant peak bandwidth,
the measured damping factors were close to the datum values. The rms errors were about 13%



for both of the methods tested. When the background noise or off-resonant vibration
increased but the high-frequency resolution was maintained, the measured damping factors
were less reliable, but both methods were of the same accuracy (an rms error of about 45%).

Differences between the two methods were observed when the resolution criterion was
not satisfied, even though an adequate signal-to-noise ratio was achieved. This is shown in the
damping estimates for the low damping data. The power spectral density method shows an
rms error of about 15%, which is close to the 13% error in the high damping data, but the single-
sided Fourier transform method has an rms error of about 43%. It is apparent that the fre-
quency resolution requirements imposed by the single-sided Fourier transform computation
are more stringent than those for the power spectral density method. In certain test cases,
with high damping and close natural frequencies, no damping estimate could be obtained
from the power spectral density function, but an estimate could be obtained using the single-
sided Fourier transform. However, this estimate could be highly inaccurate.
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9.0 CONCLUSIONS AND RECOMMENDATIONS

Several methods of measuring the damping of panels have been evaluated with particular
emphasis being placed on the practical problems associated with the use of the methods. In
particular, the techniques were evaluated for application to the measurement of the damping
of panels exposed to turbulent airflow.

Based on analytical analyses, several methods were judged to be unsuitable for the
proposed application. Non-steady-state methods, which do not incorporate random data
analysis techniques, were rejected because of noise problems, and the response autocorrela-
tion method was rejected because of problems of noise and off-resonant vibration interference.
The excitation-response cross-power spectral density function, using either boundary layer or
a second excitation, was eliminated either because it required simultaneous measurement of
the boundary layer pressure field and the vibration, or because of potential low signal-to-noise
ratios and problems of instrumentation location in the pressure equalization cavity.

Two basic methods were retained: the response power spectral density and the single-
sided Fourier transform of the response autocorrelation function. For these methods, two
alternative excitations, the turbulent boundary layer or a rapid frequency sweep, were con-
sidered. However, the latter excitation was rejected because of additional instrumentation
requirements and because there was no need for transient techniques.

The power spectral density and single-sided Fourier transform methods were demon-
strated experimentally under conditions of spatially distributed, random excitation. Under
many test conditions, the two methods estimated damping factors with similar experimental
accuracy. However, the single-sided Fourier transform method imposes more stringent require-
ments on frequency resolution than does the spectral density method. This becomes apparent
when the damping is very low and computer restrictions do not permit the resolution require-
ment to be satisfied. On the other hand, the single-sided Fourier transform method has advan-
tages when the damping is high and natural frequencies are close together. Under such con-
ditions, the power spectral density method has little value.

From this evaluation, it is recommended that, in general, the response power spectral
density method be used to measure the damping of panels exposed to turbulent airflow. Pro-
vided appropriate correction terms are introduced, the reliability and accuracy of the method
appears to be as good as that associated with other methods, and the data acquisition and
reduction requirements are no more than those normally demanded for structural response
measurements. However, if the particular conditions of high damping and close natural fre-
quencies are important, then the single-sided Fourier transform of the response autocorrela-
tion function should be used for improved accuracy.

Commercial Airplane Group
The Boeing Company
Seattle, Washington, August 1971



APPENDIX A

Finite Bandwidth Effects in the Autocorrelation Method

The autocorrelation function for a band-limited response signal can be studied by means

of the function
o 2.iwT,
R(T;8w) = j: _P@IH )] dw,

where
Pw=1 w; <€ o] < w,
=0 elsewhere
Using convolution relationships, equation (A1) can be written in the form
Ry(r:8w) = 5= [ TH (090 - 0t
0o
where
H= [ :lHa(w)|2ei“’tdw
and
8= [ p@eiwtdo.
From equations (A2) and(AS),
o(t) = %(sinwzt - sinwlt),

and from equation (A4) and definition of H, w),

' oo elwtdw
H'(t) =
® -[oo Die. 2242 2,,2.2
M [y - w®) + 48y~ Wy~ w]

'wa§a|t|

= _1r_e_2_ [coswdltl +

$oc ,
———7sinwy]t|]-
2My wa3§‘a 7 dltl

(1- £,

(AD)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)
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1
The parameter wy is the frequency of free damped vibration, wa(l - §a2)/2. Substitut-

" ing equations (A6) and (A7) in (A3),

RW(T;Aw) = RW(‘r;Aw)w2 - RW('r;Aw)QJl

where

1 fooe-wai’at

M 2‘*’a3§oz °

§
————g—l/zsinwdt
(44

(coswdt +
(1- 82

RW('r;Aw)w2 =

(A8)

sinwz(‘r— 1) sinwz(r +1)
-0 T @+D

Two approaches are possible to solve equation (A8). In one approach, it can be shown
that

oo . . _
Iy = f e_atcosbt[smc(T+ t)+ sinc(T t)]dt

o (T+1) (t-1)
(A9)
¢ COSZT
=a —_—dz
'[c a2 + (b +12)2
and
- f-at sinc(tr +t) , sinc(t - t)
12 J(; e smbt[ T+ D + T -0 dt
(A10)

b c ZCOSZT
== + ——dz
a 1 ‘[C 32 +(b+ 2)2

The integrals in equations (A9) and (A10) can be related to tabulated exponential
integrals for numerical evaluation. However, a better insight may be possible using the
approach of Kandianis (ref. 15). Equation (A8) contains integrals of the form

foo -Wy g'at sinw‘z(T t t)
A e coswdt Tz D t

and

dt

© _welat . sinwo (7 £ t)
_'; e sm<...>dt——-———-(1_:t )



As an example, select

sinwz(r +t)

® —wy St
= (s34
13—.!; e coswgyt @10

oo _ t sinwat T —n St sinwnt
= ewai’a‘r[j; e “ola coswq(t - 7) 2 dt - f e X¢ coswy(t -~ . dt] (A1)
0

The infinite integral on the right side of equation (A11) can be evaluated using the results of
Kandianis (ref. 15),

0 _ &t sincwot [2¢
f o “alo coswgyt 2 dt =-—;—tan 1 —9‘5——-;'— if (g2 - w22) >0
© h“’a - W
[2¢ W wH |
=—;tan_1 _Qiot_g +m if(waz—w22)<0
| “o” - W
and
2 2
o _¢, t sinwoyt ( ) + (W, T Wy)
J' e ol sinwyt—— 2 dt—— [§ « 2

o [(g w)? + (g - wn)?

-W T
Terms of this type provide constant factors of the exponential e °‘§°‘| | and so do not
influence the damping estimate.

To evaluate the finite integral on the right hand side of equation (A11), Kandianis (ref.
15) makes use of the reduction formula

Pead
fxpeaxsinbxdx— ); 2(asmbx+bcosbx) _fop le@X(asinbx - beosbx)dx (A12)
+

a a

Taking the first term on the right side of equation (A12) as being an approximation for the
integral on the left side, Kandianis shows that the autocorrelation function for a band-limited
signal contains terms of the form (cos wzr)/r and (sin wz'r)/f, with similar terms in wj. These
terms, since they are functions of 7, will distort the autocorrelation function and introduce errors

in the damping estimates. Thus, the filter bandwidths have to be chosen to minimize these
errors.
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APPENDIX B

Truncation Effects in the Single-Sided Fourier Transform Method

In practice, truncation errors arise in the computation of the single-sided Fourier trans-
form function, and it is necessary to correct the measured damping factor. The magnitude of

the correction can be estimated by means of the integral
[ e -iwT,
Fu@ity) =55 [ DORymeTar,

where

D(7)=1 0<7<7,

Using the faltung relationship, equation (B1) can be written in the form

'Fw(w;rm) = ‘[:Q(w - wl)Sw(wl)dwl

where

QW= [ De i@l
2 o0
and

Sw@ =52 JRymeiwTdr

= Spl@)Hyw)l?

(BH

(B2)

(B3)

(B4)

(B5)

for a single-degree-of-freedom system with frequency response function H,(w). Substituting

(B4) and (B5) in (B3) gives

-

(w- wyp)

iS oo
w7 ) =P 2
Fwim) =57 [-w Hy@)|“dwy,

where it is assumed that the excitation is white noise so that Sp(w) = Sp. Substituting

1

Hyw)|? = > ,
Ma2 [(o)o[2 - wz) + 4§a2wa2w2.

(B6)



in equation (B6), and using contour integration in the upper half plane, equation (B6) becomes

S
(B7)

e [x) * iy ()]

MMy 2wg o (1= 6P

where
&
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_ 2.2
wg= w1 - 8%)

If (1/p)(ds/dw) is taken as a convenient measure of the characteristics of the locus of
F. (w;T..), as suggested by Clarkson and Mercer (ref. 17), then ‘

dx dy [_d_ﬁ‘_zl_ % dy]
1 ds _ (ydw dw) d

Evaluating (1/p)(ds/dw) at the frequency of maximum value of |Ha(w)|2, ie.,at
w2 =(1-25,2 w2,

and assuming that the damping is small so that §‘a2 << 1, equation (B8) reduces to

d%x
1ds __do?
P dw ™ dy

dw
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or, after substituting for dzx/dw2 and dy/dw,

- T . 1
lds_ 4n 1-e el [1 + wag'afm(l - §asmwa7'mcoswa7m) +§“’a2§a27m2
paf - " w Wy T
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TABLE I.—-CALCULATED? NATURAL FREQUENCIES OF
ALUMINUM PANELP WITH CLAMPED EDGES

n® 1 2 3 4
m€
Frequency,d Hz

1 253 642 1226 2004
2 359 742 1327 2106
3 541 913 1492 -
4 798 1157 1728 ——
5 1124 _ 1473 2035 —
6 1519 1861 — —
7 1980 - —— -
8 —_ —_ _ —_

3Warburton method (ref. 32)
b30.48 x 1778 x 0.127cm (12 x 7 x 0.05 in.)

®Mode order (m,n) defined by number of half wavelengths along
length and breadth of panel.

dDashes indicate natural frequencies higher than 2150 Hz.

TABLE I11.—DETAILS OF DAMPING TAPE

Type Scotch brand 428A
Thickness of aluminum foil 14.0x 103 cm (5.5 x 103 in.)
Thickness of adhesive 6.4x 103 cm (2.5 x 103 in.)
Thickness of foil plus adhesive 20.3 x 103 cm £10% (8 x 103 in. £10%)
Weight 4.40 N/m? (0.09 Ib/sq f1)

Weight of bare panel 0.89
Weight of panel and tape

Y TI T Y TR

PRECEDING PAGE DLANK 130T FILlER



TABLE 111.—PANEL NATURAL FREQUENCIES AND
DAMPING FACTORS MEASURED WITH DISCRETE FREQUENCY EXCITATION

Location of Proximity Probe High damping Low damping
Mode xq X3
order,
m,n cm in. cm in. fm,n'Hz §m,n fm,n'HZ §‘m'n
21 7.62 3.0 8.89 3.5 359 0.0153 362 0.00102
3.1 15.24 6.0 8.89 3.5 538 0.0115 545 0.00170
1,2 15.24 6.0 13.34 5.25 599 0.0048 612 0.00202
2,2 7.62 3.0 13.34 5.25 700 0.0089 717 0.00163
41 11.43 4.5 8.89 35 773 0.0175 778 0.00190
3.2 15.24 6.0 13.34 5.25 867 0.0113 888 0.00127
5.1 15.24 6.0 8.89 35 973 0.0200 1095 0.00127
4,2 15.24 6.0 8.89 3.5 1057 0.0163 _ ——
1,3 15.24 6.0 8.89 3.5 1098 0.0127 1124 0.00188
2,3 7.62 3.0 8.89 3.5 1184 | 0.0127 1221 0.00313
3.3 15.24 6.0 8.89 3.5 1351 0.0097 1405 0.00194
6,1 8.89 35 11.43 45 1351 0.0138 1404 0.00164
5,2 12.07 4.75 13.34 5.2 1355 0.0137 1405 0.00231

TABLE IV.—MEASUREMENT LOCATIONS AND
EXCITATION BANDWIDTHS FOR RANDOM EXCITATION

Location of proximity probe Frequency range,?
Run Xq Xa Hz
cm in. cm in.
2B 7.62 3.0 8.89 3.5 200-400
3A 15.24 6.0 8.89 3.5 400-800
3B 7.62 3.0 13.34 5.25 400-800
4A 5.08 2.0 13.34 5.25 200-800
48 19.05 7.5 13.34 5.25 650-850
5B 5.08 2.0 13.34 5.25 .600-1200
68 15.24 6.0 8.89 35 1000-1200
7A 15.24 6.0 8.89 3.5 800-1600
78 7.62 3.0 8.89 35 800-1600
8A 2.54 1.0 14.61 5.75 1250-1500
8B 2.54 1.0 14.61 5.75 800-1600
9B 5.08 2.0 13.34 5.25 200-2000

a . . . . .
Excitation signal decreases at a rate of 18 dB per octave outside indicated frequency range.




TABLE V.-SUMMARY OF MEASURED DAMPING FACTORS

USING POWER SPECTRAL DENSITY METHOD

Run Mode order, m,n Frequency, fm,n' Hz Damping, gm,n Bg—a
(a) High damping (spectral peak-to-valley ratio > 10 dB)
2B 2.1 356 0.0165 1.08
9B 21 359 0.0141 0.92
3A 3.1 535 0.0129 1.12
4B 3.1 538 0.0128 1.1
9B 3.1 536 0.0126 1.10
3B 3,1 539 0.0144 1.25
5B 41 772 0.0155 0.89
4B 4,1 772 0.0196 1.12
7B 2,3 1176 0.0133 1.05
7A 33 1346 0.0107 1.11
9B 3.3 1348 0.0105 1.09
{b) High damping (spectral peak-to-valley ratio << 10 dB)
3B 41 780 0.0216 1.23
5B 3,2 869 0.0214 1.89
9B 3,2 865 0.0120 1.06
7A 2,3 1185 0.0155 1.22
7B 3.3 1340 0.0126 1.30
(c) Low damping
88 2,1 364 0.00098 0.96°
4B 3.1 546 0.00188 1.10
8B 3.1 546 0.00193 1.13
8B 1,2 605 0.00273 1.35¢
4B 41 789 0.00174 0.92
8B 41 790 0.00246 1.29
4B 3,2 889 0.00121 0.95
8B 3,2 890 0.00104 0.82
7A 5,1 1090 0.00168 1.32
7B 5,1 1091 0.00149 1.17
7A 1,3 1120 0.00171 0.91
8B 1,3 1120 0.00198 1.06
7A 2,3 1210 0.00308 0.98
8B 23 1232 0.00264 0.84
7A 3,3 1400 0.00214 1.10
8B 3.3 1400 0.00189 0.98

#Ratio of measured damping factor to datum damping factor.

BEiiter bandwith greater than one half of the resonance peak bandwidth.

CSpectral peak-tovalley ratio < 10 dB.




TABLE VI.-SUMMARY OF MEASURED DAMPING FACTORS USING
SINGLE-SIDED FOURIER TRANSFORM METHOD

Run Mode order, m,n Frequency, fm,n' Hz Damping, fm,n Bg.a

{a) High damping (spectral peak-to-valley ratio, > 10 dB)

2B 2.1 357 0.0156 1.02
9B 2,1 358 0.0126 0.82
3B 3.1 537 0.0139 1.21
4B 3.1 534 0.0120 1.04
8B 3,1 536 0.0123 1.07
9B 3.1 ‘537 0.0100 0.87
4B 41 775 0.0188 1.07
4B 41 775 0.0171 0.98
4B 41 770 0.0152 0.87
88 4,1 776 0.0164 0.94
9B 41 773 0.0150 0.86
78 23 1179 0.0126 0.99
88 2,3 1194 0.0148 1.17
7A 3,3 1347 0.0105 1.08
8B 3.3 1354 0.0080 0.82

(b} High damping (spectral peak-to-valley ratio < 10 dB)

8B 3,2 862 0.0183 1.62
7A 5,1 970 0.0354 1.77
8B 5,1 970 0.0178 0.89
7A 4,2 1056 0.0205 1.26
7A 1,3 1091 0.0214 1.69
88 1,3 1085 0.0120 0.94
7B 33 1340 0.0088 0.91

{c) Low damping

88 2.1 364 0.00174 1.70°
88 3,1 546 0.00227 1.34P
88 41 790 0.00216 1.14
88 3,2 890 0.00134 1.05
88 5,1 1099 0.00213 1.68
88 1.3 1117 0.00279 1.48
88 33 1398 0.00185 0.96

4Ratio of measured damping factor to datum damping factor.
PFilter bandwidth too wide (Afg > 1/4 Afy)
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Figure 1.—Schematic of Linear System Under Investigation
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